Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 049, 74 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.049
(Mi sigma1944)
 

Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval–Plancherel-Type Formulas under Subgroups

Ryosuke Nakahamaab

a NTT Institute for Fundamental Mathematics, NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan
b Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
References:
Abstract: Let $(G,G_1)=(G,(G^\sigma)_0)$ be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces $D_1=G_1/K_1\subset D=G/K$, realized as bounded symmetric domains in complex vector spaces $\mathfrak{p}^+_1:=(\mathfrak{p}^+)^\sigma\subset\mathfrak{p}^+$ respectively. Then the universal covering group $\widetilde{G}$ of $G$ acts unitarily on the weighted Bergman space $\mathcal{H}_\lambda(D)\subset\mathcal{O}(D)=\mathcal{O}_\lambda(D)$ on $D$ for sufficiently large $\lambda$. Its restriction to the subgroup $\widetilde{G}_1$ decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua–Kostant–Schmid–Kobayashi's formula in terms of the $\widetilde{K}_1$-decomposition of the space $\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$ of polynomials on $\mathfrak{p}^+_2:=(\mathfrak{p}^+)^{-\sigma}\subset\mathfrak{p}^+$. The object of this article is to understand the decomposition of the restriction $\mathcal{H}_\lambda(D)|_{\widetilde{G}_1}$ by studying the weighted Bergman inner product on each $\widetilde{K}_1$-type in $\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)\subset\mathcal{H}_\lambda(D)$. For example, by computing explicitly the norm $\Vert f\Vert_\lambda$ for $f=f(x_2)\in\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$, we can determine the Parseval–Plancherel-type formula for the decomposition of $\mathcal{H}_\lambda(D)|_{\widetilde{G}_1}$. Also, by computing the poles of $\bigl\langle f(x_2),{\rm e}^{(x|\overline{z})_{\mathfrak{p}^+}}\bigr\rangle_{\lambda,x}$ for $f(x_2)\in\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$, $x=(x_1,x_2)$, $z\in\mathfrak{p}^+=\mathfrak{p}^+_1\oplus\mathfrak{p}^+_2$, we can get some information on branching of $\mathcal{O}_\lambda(D)|_{\widetilde{G}_1}$ also for $\lambda$ in non-unitary range. In this article we consider these problems for all $\widetilde{K}_1$-types in $\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$.
Keywords: weighted Bergman spaces, holomorphic discrete series representations, branching laws, Parseval–Plancherel-type formulas, highest weight modules.
Funding agency Grant number
Japan Society for the Promotion of Science JP20J00114
This work was supported by Grant-in-Aid for JSPS Fellows Grant Number JP20J00114.
Received: September 21, 2022; in final form June 26, 2023; Published online July 21, 2023
Document Type: Article
MSC: 22E45, 43A8, 17C30
Language: English
Citation: Ryosuke Nakahama, “Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval–Plancherel-Type Formulas under Subgroups”, SIGMA, 19 (2023), 049, 74 pp.
Citation in format AMSBIB
\Bibitem{Nak23}
\by Ryosuke~Nakahama
\paper Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval--Plancherel-Type Formulas under Subgroups
\jour SIGMA
\yr 2023
\vol 19
\papernumber 049
\totalpages 74
\mathnet{http://mi.mathnet.ru/sigma1944}
\crossref{https://doi.org/10.3842/SIGMA.2023.049}
Linking options:
  • https://www.mathnet.ru/eng/sigma1944
  • https://www.mathnet.ru/eng/sigma/v19/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :12
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024