Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 047, 141 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.047
(Mi sigma1942)
 

This article is cited in 5 scientific papers (total in 5 papers)

Seiberg–Witten Geometry of Four-Dimensional $\mathcal N=2$ Quiver Gauge Theories

Nikita Nekrasova, Vasily Pestunb

a Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY 11794-3636, USA
b Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France
References:
Abstract: Seiberg–Witten geometry of mass deformed $\mathcal{N}=2$ superconformal ADE quiver gauge theories in four dimensions is determined. We solve the limit shape equations derived from the gauge theory and identify the space $\mathfrak{M}$ of vacua of the theory with the moduli space of the genus zero holomorphic (quasi)maps to the moduli space $\mathrm{Bun}_{\mathbf{G}}(\mathcal{E})$ of holomorphic $G^{\mathbb{C}}$-bundles on a (possibly degenerate) elliptic curve $\mathcal{E}$ defined in terms of the microscopic gauge couplings, for the corresponding simple ADE Lie group $G$. The integrable systems $\mathfrak{B}$ underlying the special geometry of $\mathfrak{M}$ are identified. The moduli spaces of framed $G$-instantons on $\mathbb{R}^2 \times \mathbb{T}^2$, of $G$-monopoles with singularities on $\mathbb{R}^2 \times \mathbb{S}^1$, the Hitchin systems on curves with punctures, as well as various spin chains play an important rôle in our story. We also comment on the higher-dimensional theories.
Keywords: low-energy theory, instantons, monopoles, integrability.
Received: December 19, 2022; in final form June 20, 2023; Published online July 16, 2023
Document Type: Article
MSC: 81T12, 81T13, 81T70
Language: English
Citation: Nikita Nekrasov, Vasily Pestun, “Seiberg–Witten Geometry of Four-Dimensional $\mathcal N=2$ Quiver Gauge Theories”, SIGMA, 19 (2023), 047, 141 pp.
Citation in format AMSBIB
\Bibitem{NekPes23}
\by Nikita~Nekrasov, Vasily~Pestun
\paper Seiberg--Witten Geometry of Four-Dimensional $\mathcal N=2$ Quiver Gauge Theories
\jour SIGMA
\yr 2023
\vol 19
\papernumber 047
\totalpages 141
\mathnet{http://mi.mathnet.ru/sigma1942}
\crossref{https://doi.org/10.3842/SIGMA.2023.047}
Linking options:
  • https://www.mathnet.ru/eng/sigma1942
  • https://www.mathnet.ru/eng/sigma/v19/p47
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :82
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024