Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 046, 47 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.046
(Mi sigma1941)
 

Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via $U_{\mathfrak{q}}\mathfrak{sl}_2$ Symmetry

Dmitry Chernyakab, Azat M. Gainutdinovc, Jesper Lykke Jacobsendab, Hubert Saleureb

a Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
b Institut de Physique Théorique, Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
c Institut Denis Poisson, CNRS, Université de Tours, Parc de Grandmont, 37200 Tours, France
d Sorbonne Université, Ecole Normale Supérieure, CNRS, Laboratoire de Physique (LPENS), 75005 Paris, France
e USC Physics and Astronomy Department, Los Angeles Ca 90089, USA
References:
Abstract: We derive by the traditional algebraic Bethe ansatz method the Bethe equations for the general open XXZ spin chain with non-diagonal boundary terms under the Nepomechie constraint [J. Phys. A 37 (2004), 433–440, arXiv:hep-th/0304092]. The technical difficulties due to the breaking of $\mathsf{U}(1)$ symmetry and the absence of a reference state are overcome by an algebraic construction where the two-boundary Temperley–Lieb Hamiltonian is realised in a new $U_{\mathfrak{q}}\mathfrak{sl}_2$-invariant spin chain involving infinite-dimensional Verma modules on the edges [J. High Energy Phys. 2022 (2022), no. 11, 016, 64 pages, arXiv:2207.12772]. The equivalence of the two Hamiltonians is established by proving Schur–Weyl duality between $U_{\mathfrak{q}}\mathfrak{sl}_2$ and the two-boundary Temperley–Lieb algebra. In this framework, the Nepomechie condition turns out to have a simple algebraic interpretation in terms of quantum group fusion rules.
Keywords: quantum integrable models, non-diagonal K-matrices, Verma modules, Temperley–Lieb algebras.
Funding agency Grant number
Agence Nationale de la Recherche ANR-21-CE40-0003
JCJC ANR-18-CE40-0001
Centre National de la Recherche Scientifique
Russian Science Foundation 20-61-46005
This work was supported by the French Agence Nationale de la Recherche (ANR) under grant ANR-21-CE40-0003 (project CONFICA). The work of A.M.G. was supported by the CNRS, and partially by the ANR grant JCJC ANR-18-CE40-0001 and the RSF Grant No. 20-61-46005.
Received: January 26, 2023; in final form July 4, 2023; Published online July 16, 2023
Document Type: Article
Language: English
Citation: Dmitry Chernyak, Azat M. Gainutdinov, Jesper Lykke Jacobsen, Hubert Saleur, “Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via $U_{\mathfrak{q}}\mathfrak{sl}_2$ Symmetry”, SIGMA, 19 (2023), 046, 47 pp.
Citation in format AMSBIB
\Bibitem{CheGaiJac23}
\by Dmitry~Chernyak, Azat~M.~Gainutdinov, Jesper~Lykke~Jacobsen, Hubert~Saleur
\paper Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via $U_{\mathfrak{q}}\mathfrak{sl}_2$ Symmetry
\jour SIGMA
\yr 2023
\vol 19
\papernumber 046
\totalpages 47
\mathnet{http://mi.mathnet.ru/sigma1941}
\crossref{https://doi.org/10.3842/SIGMA.2023.046}
Linking options:
  • https://www.mathnet.ru/eng/sigma1941
  • https://www.mathnet.ru/eng/sigma/v19/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :21
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024