Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 041, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.041
(Mi sigma1936)
 

Deformations of Instanton Metrics

Roger Bielawskia, Yannic Borcharda, Sergey A. Cherkisb

a Institut für Differentialgeometrie, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
b Department of Mathematics, The University of Arizona, 617 N. Santa Rita Ave., Tucson, AZ 85721-0089, USA
References:
Abstract: We discuss a class of bow varieties which can be viewed as Taub-NUT deformations of moduli spaces of instantons on {noncommutative} $\mathbb{R}^4$. Via the generalized Legendre transform, we find the Kähler potential on each of these spaces.
Keywords: instanton, bow variety, hyperkähler geometry, generalised Legendre transform.
Received: January 25, 2023; in final form June 5, 2023; Published online June 13, 2023
Document Type: Article
MSC: 53C26, 53C28, 81T13
Language: English
Citation: Roger Bielawski, Yannic Borchard, Sergey A. Cherkis, “Deformations of Instanton Metrics”, SIGMA, 19 (2023), 041, 11 pp.
Citation in format AMSBIB
\Bibitem{BieBorChe23}
\by Roger~Bielawski, Yannic~Borchard, Sergey~A.~Cherkis
\paper Deformations of Instanton Metrics
\jour SIGMA
\yr 2023
\vol 19
\papernumber 041
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma1936}
\crossref{https://doi.org/10.3842/SIGMA.2023.041}
Linking options:
  • https://www.mathnet.ru/eng/sigma1936
  • https://www.mathnet.ru/eng/sigma/v19/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:73
    Full-text PDF :14
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024