Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 039, 32 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.039
(Mi sigma1934)
 

This article is cited in 1 scientific paper (total in 1 paper)

Double Quiver Gauge Theory and BPS/CFT Correspondence

Taro Kimura

Institut de Mathématiques de Bourgogne, Université de Bourgogne, CNRS, France
Full-text PDF (659 kB) Citations (1)
References:
Abstract: We provide a formalism using the $q$-Cartan matrix to compute the instanton partition function of quiver gauge theory on various manifolds. Applying this formalism to eight dimensional setups, we introduce the notion of double quiver gauge theory characterized by a pair of quivers. We also explore the BPS/CFT correspondence in eight dimensions based on the $q$-Cartan matrix formalism.
Keywords: quiver gauge theory, BPS/CFT correspondence, instanton moduli space, quiver variety, Calabi–Yau four-fold.
Funding agency Grant number
Agence Nationale de la Recherche ANR-15-IDEX-0003
ANR-17-EURE-0002
This work was in part supported by “Investissements d’Avenir” program, Project ISITE-BFC (No. ANR-15-IDEX-0003), EIPHI Graduate School (No. ANR-17-EURE-0002), and Bourgogne-Franche-Comté region.
Received: January 22, 2023; in final form May 28, 2023; Published online June 8, 2023
Document Type: Article
Language: English
Citation: Taro Kimura, “Double Quiver Gauge Theory and BPS/CFT Correspondence”, SIGMA, 19 (2023), 039, 32 pp.
Citation in format AMSBIB
\Bibitem{Kim23}
\by Taro~Kimura
\paper Double Quiver Gauge Theory and BPS/CFT Correspondence
\jour SIGMA
\yr 2023
\vol 19
\papernumber 039
\totalpages 32
\mathnet{http://mi.mathnet.ru/sigma1934}
\crossref{https://doi.org/10.3842/SIGMA.2023.039}
Linking options:
  • https://www.mathnet.ru/eng/sigma1934
  • https://www.mathnet.ru/eng/sigma/v19/p39
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024