Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 067, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.067
(Mi sigma193)
 

This article is cited in 58 scientific papers (total in 58 papers)

Quadratic Algebra Approach to an Exactly Solvable Position-Dependent Mass Schrödinger Equation in Two Dimensions

Christiane Quesne

Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium
References:
Abstract: An exactly solvable position-dependent mass Schrödinger equation in two dimensions, depicting a particle moving in a semi-infinite layer, is re-examined in the light of recent theories describing superintegrable two-dimensional systems with integrals of motion that are quadratic functions of the momenta. To get the energy spectrum a quadratic algebra approach is used together with a realization in terms of deformed parafermionic oscillator operators. In this process, the importance of supplementing algebraic considerations with a proper treatment of boundary conditions for selecting physical wavefunctions is stressed. Some new results for matrix elements are derived. This example emphasizes the interest of a quadratic algebra approach to position-dependent mass Schrödinger equations.
Keywords: Schrödinger equation; position-dependent mass; quadratic algebra.
Received: March 30, 2007; in final form May 8, 2007; Published online May 17, 2007
Bibliographic databases:
Document Type: Article
MSC: 81R12; 81R15
Language: English
Citation: Christiane Quesne, “Quadratic Algebra Approach to an Exactly Solvable Position-Dependent Mass Schrödinger Equation in Two Dimensions”, SIGMA, 3 (2007), 067, 14 pp.
Citation in format AMSBIB
\Bibitem{Que07}
\by Christiane Quesne
\paper Quadratic Algebra Approach to an Exactly Solvable Position-Dependent Mass Schr\"odinger Equation in Two Dimensions
\jour SIGMA
\yr 2007
\vol 3
\papernumber 067
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma193}
\crossref{https://doi.org/10.3842/SIGMA.2007.067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2322794}
\zmath{https://zbmath.org/?q=an:05241580}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889235898}
Linking options:
  • https://www.mathnet.ru/eng/sigma193
  • https://www.mathnet.ru/eng/sigma/v3/p67
  • This publication is cited in the following 58 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:457
    Full-text PDF :120
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024