Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 029, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.029
(Mi sigma1924)
 

Total Mean Curvature and First Dirac Eigenvalue

Simon Raulot

Laboratoire de Mathématiques R. Salem, UMR 6085 CNRS-Université de Rouen, Avenue de l'Université, BP.12, Technopôle du Madrillet, 76801 Saint-Étienne-du-Rouvray, France
References:
Abstract: In this note, we prove an optimal upper bound for the first Dirac eigenvalue of some hypersurfaces in the Euclidean space by combining a positive mass theorem and the construction of quasi-spherical metrics. As a direct consequence of this estimate, we obtain an asymptotic expansion for the first eigenvalue of the Dirac operator on large spheres in three-dimensional asymptotically flat manifolds. We also study this expansion for small geodesic spheres in a three-dimensional Riemannian manifold. We finally discuss how this method can be adapted to yield similar results in the hyperbolic space.
Keywords: Dirac operator, total mean curvature, scalar curvature, mass.
Received: October 25, 2022; in final form May 9, 2023; Published online May 25, 2023
Bibliographic databases:
Document Type: Article
Language: English
Citation: Simon Raulot, “Total Mean Curvature and First Dirac Eigenvalue”, SIGMA, 19 (2023), 029, 14 pp.
Citation in format AMSBIB
\Bibitem{Rau23}
\by Simon~Raulot
\paper Total Mean Curvature and First Dirac Eigenvalue
\jour SIGMA
\yr 2023
\vol 19
\papernumber 029
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1924}
\crossref{https://doi.org/10.3842/SIGMA.2023.029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4592899}
Linking options:
  • https://www.mathnet.ru/eng/sigma1924
  • https://www.mathnet.ru/eng/sigma/v19/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:65
    Full-text PDF :16
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024