Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 019, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.019
(Mi sigma1914)
 

Higher Braidings of Diagonal Type

Michael Cuntz, Tobias Ohrmann

Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Welfengarten 1, D-30167 Hannover, Germany
References:
Abstract: Heckenberger introduced the Weyl groupoid of a finite-dimensional Nichols algebra of diagonal type. We replace the matrix of its braiding by a higher tensor and present a construction which yields further Weyl groupoids. Abelian cohomology theory gives evidence for the existence of a higher braiding associated to such a tensor.
Keywords: Nichols algebra, braiding, Weyl groupoid.
Received: May 30, 2022; in final form March 27, 2023; Published online April 6, 2023
Bibliographic databases:
Document Type: Article
MSC: 17B22, 16T30, 20F55
Language: English
Citation: Michael Cuntz, Tobias Ohrmann, “Higher Braidings of Diagonal Type”, SIGMA, 19 (2023), 019, 23 pp.
Citation in format AMSBIB
\Bibitem{CunOhr23}
\by Michael~Cuntz, Tobias~Ohrmann
\paper Higher Braidings of Diagonal Type
\jour SIGMA
\yr 2023
\vol 19
\papernumber 019
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma1914}
\crossref{https://doi.org/10.3842/SIGMA.2023.019}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4571026}
Linking options:
  • https://www.mathnet.ru/eng/sigma1914
  • https://www.mathnet.ru/eng/sigma/v19/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :11
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024