|
Higher Braidings of Diagonal Type
Michael Cuntz, Tobias Ohrmann Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Welfengarten 1, D-30167 Hannover, Germany
Abstract:
Heckenberger introduced the Weyl groupoid of a finite-dimensional Nichols algebra of diagonal type. We replace the matrix of its braiding by a higher tensor and present a construction which yields further Weyl groupoids. Abelian cohomology theory gives evidence for the existence of a higher braiding associated to such a tensor.
Keywords:
Nichols algebra, braiding, Weyl groupoid.
Received: May 30, 2022; in final form March 27, 2023; Published online April 6, 2023
Citation:
Michael Cuntz, Tobias Ohrmann, “Higher Braidings of Diagonal Type”, SIGMA, 19 (2023), 019, 23 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1914 https://www.mathnet.ru/eng/sigma/v19/p19
|
Statistics & downloads: |
Abstract page: | 79 | Full-text PDF : | 11 | References: | 18 |
|