Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 065, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.065
(Mi sigma191)
 

This article is cited in 9 scientific papers (total in 9 papers)

The Rahman Polynomials Are Bispectral

F. Alberto Grünbaum

Department of Mathematics, University of California, Berkeley, CA 94720, USA
Full-text PDF (208 kB) Citations (9)
References:
Abstract: In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many remarkable properties enjoyed by these polynomials. For several challenges, including finding a general proof of some of the facts displayed here the reader should look at the last section of this paper.
Keywords: bispectral property; multivariable polynomials; rings of commuting difference operators.
Received: February 1, 2007; in final form April 22, 2007; Published online May 3, 2007
Bibliographic databases:
Document Type: Article
MSC: 33C45; 22E45
Language: English
Citation: F. Alberto Grünbaum, “The Rahman Polynomials Are Bispectral”, SIGMA, 3 (2007), 065, 11 pp.
Citation in format AMSBIB
\Bibitem{Gru07}
\by F.~Alberto Gr\"unbaum
\paper The Rahman Polynomials Are Bispectral
\jour SIGMA
\yr 2007
\vol 3
\papernumber 065
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma191}
\crossref{https://doi.org/10.3842/SIGMA.2007.065}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2322792}
\zmath{https://zbmath.org/?q=an:05241578}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200065}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234612}
Linking options:
  • https://www.mathnet.ru/eng/sigma191
  • https://www.mathnet.ru/eng/sigma/v3/p65
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024