Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 062, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.062
(Mi sigma188)
 

This article is cited in 5 scientific papers (total in 5 papers)

Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility

Artur Sergyeyev

Mathematical Institute, Silesian University in Opava, Na Rybnícku 1, 746 01 Opava, Czech Republic
Full-text PDF (288 kB) Citations (5)
References:
Abstract: We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure $J$ can be written as the Lie derivative of $J^{-1}$ along a suitably chosen nonlocal vector field. Moreover, we present a new description for local Hamiltonian structures of arbitrary order compatible with a given nondegenerate local Hamiltonian structure of zero or first order, including Hamiltonian operators of the Dubrovin–Novikov type.
Keywords: weakly nonlocal Hamiltonian structure; symplectic structure; Lie derivative.
Received: December 15, 2006; in final form April 23, 2007; Published online April 26, 2007
Bibliographic databases:
Document Type: Article
MSC: 37K10; 37K05
Language: English
Citation: Artur Sergyeyev, “Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility”, SIGMA, 3 (2007), 062, 14 pp.
Citation in format AMSBIB
\Bibitem{Ser07}
\by Artur Sergyeyev
\paper Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
\jour SIGMA
\yr 2007
\vol 3
\papernumber 062
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma188}
\crossref{https://doi.org/10.3842/SIGMA.2007.062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299863}
\zmath{https://zbmath.org/?q=an:1138.37043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234825}
Linking options:
  • https://www.mathnet.ru/eng/sigma188
  • https://www.mathnet.ru/eng/sigma/v3/p62
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :40
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024