Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 076, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.076
(Mi sigma1872)
 

This article is cited in 4 scientific papers (total in 4 papers)

Universality of Descendent Integrals over Moduli Spaces of Stable Sheaves on $K3$ Surfaces

Georg Oberdieck

Mathematisches Institut, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
Full-text PDF (456 kB) Citations (4)
References:
Abstract: We interprete results of Markman on monodromy operators as a universality statement for descendent integrals over moduli spaces of stable sheaves on $K3$ surfaces. This yields effective methods to reduce these descendent integrals to integrals over the punctual Hilbert scheme of the $K3$ surface. As an application we establish the higher rank Segre–Verlinde correspondence for $K3$ surfaces as conjectured by Göttsche and Kool.
Keywords: moduli spaces of sheaves, $K3$ surfaces, descendent integrals.
Funding agency Grant number
Deutsche Forschungsgemeinschaft OB 512/1-1
The author is partially funded by the Deutsche Forschungsgemeinschaft (DFG) – OB 512/1-1.
Received: January 23, 2022; in final form October 6, 2022; Published online October 13, 2022
Bibliographic databases:
Document Type: Article
Language: English
Citation: Georg Oberdieck, “Universality of Descendent Integrals over Moduli Spaces of Stable Sheaves on $K3$ Surfaces”, SIGMA, 18 (2022), 076, 15 pp.
Citation in format AMSBIB
\Bibitem{Obe22}
\by Georg~Oberdieck
\paper Universality of Descendent Integrals over Moduli Spaces of Stable Sheaves on $K3$ Surfaces
\jour SIGMA
\yr 2022
\vol 18
\papernumber 076
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma1872}
\crossref{https://doi.org/10.3842/SIGMA.2022.076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4495687}
Linking options:
  • https://www.mathnet.ru/eng/sigma1872
  • https://www.mathnet.ru/eng/sigma/v18/p76
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :20
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024