Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 074, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.074
(Mi sigma1870)
 

The Generalized Lipkin–Meshkov–Glick Model and the Modified Algebraic Bethe Ansatz

Taras Skrypnyk

Bogolyubov Institute for Theoretical Physics, 14-b Metrolohichna Str., Kyiv, 03680, Ukraine
References:
Abstract: We show that the Lipkin–Meshkov–Glick $2N$-fermion model is a particular case of one-spin Gaudin-type model in an external magnetic field corresponding to a limiting case of non-skew-symmetric elliptic $r$-matrix and to an external magnetic field directed along one axis. We propose an exactly-solvable generalization of the Lipkin–Meshkov–Glick fermion model based on the Gaudin-type model corresponding to the same $r$-matrix but arbitrary external magnetic field. This model coincides with the quantization of the classical Zhukovsky–Volterra gyrostat. We diagonalize the corresponding quantum Hamiltonian by means of the modified algebraic Bethe ansatz. We explicitly solve the corresponding Bethe-type equations for the case of small fermion number $N=1,2$.
Keywords: classical $r$-matrix, Gaudin-type model, algebraic Bethe ansatz.
Received: June 19, 2022; in final form September 16, 2022; Published online October 10, 2022
Bibliographic databases:
Document Type: Article
MSC: 81R12, 82B23, 17B80
Language: English
Citation: Taras Skrypnyk, “The Generalized Lipkin–Meshkov–Glick Model and the Modified Algebraic Bethe Ansatz”, SIGMA, 18 (2022), 074, 18 pp.
Citation in format AMSBIB
\Bibitem{Skr22}
\by Taras~Skrypnyk
\paper The Generalized Lipkin--Meshkov--Glick Model and the Modified Algebraic Bethe Ansatz
\jour SIGMA
\yr 2022
\vol 18
\papernumber 074
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1870}
\crossref{https://doi.org/10.3842/SIGMA.2022.074}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4493811}
Linking options:
  • https://www.mathnet.ru/eng/sigma1870
  • https://www.mathnet.ru/eng/sigma/v18/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :14
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024