Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 069, 25 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.069
(Mi sigma1865)
 

Freezing Limits for Beta-Cauchy Ensembles

Michael Voit

Fakultät Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
References:
Abstract: Bessel processes associated with the root systems $A_{N-1}$ and $B_N$ describe interacting particle systems with $N$ particles on $\mathbb R$; they form dynamic versions of the classical $\beta$-Hermite and Laguerre ensembles. In this paper we study corresponding Cauchy processes constructed via some subordination. This leads to $\beta$-Cauchy ensembles in both cases with explicit distributions. For these distributions we derive central limit theorems for fixed $N$ in the freezing regime, i.e., when the parameters tend to infinity. The results are closely related to corresponding known freezing results for $\beta$-Hermite and Laguerre ensembles and for Bessel processes.
Keywords: Cauchy processes, Bessel processes, $\beta$-Hermite ensembles, $\beta$-Laguerre ensembles, freezing, zeros of classical orthogonal polynomials, Calogero–Moser–Sutherland particle models.
Received: May 19, 2022; in final form September 15, 2022; Published online September 28, 2022
Bibliographic databases:
Document Type: Article
Language: English
Citation: Michael Voit, “Freezing Limits for Beta-Cauchy Ensembles”, SIGMA, 18 (2022), 069, 25 pp.
Citation in format AMSBIB
\Bibitem{Voi22}
\by Michael~Voit
\paper Freezing Limits for Beta-Cauchy Ensembles
\jour SIGMA
\yr 2022
\vol 18
\papernumber 069
\totalpages 25
\mathnet{http://mi.mathnet.ru/sigma1865}
\crossref{https://doi.org/10.3842/SIGMA.2022.069}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4489090}
Linking options:
  • https://www.mathnet.ru/eng/sigma1865
  • https://www.mathnet.ru/eng/sigma/v18/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :21
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024