Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 068, 61 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.068
(Mi sigma1864)
 

Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories

Jacob Grossa, Dominic Joycea, Yuuji Tanakab

a The Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
b Department of Mathematics, Faculty of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
References:
Abstract: An enumerative invariant theory in algebraic geometry, differential geometry, or representation theory, is the study of invariants which ‘count’ $\tau$-(semi)stable objects $E$ with fixed topological invariants $[\![E]\!]=\alpha$ in some geometric problem, by means of a virtual class $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ in some homology theory for the moduli spaces $\mathcal{M}_\alpha^{{\rm st}}(\tau)\subseteq\mathcal{M}_\alpha^{{\rm ss}}(\tau)$ of $\tau$-(semi)stable objects. Examples include Mochizuki's invariants counting coherent sheaves on surfaces, Donaldson–Thomas type invariants counting coherent sheaves on Calabi–Yau 3- and 4-folds and Fano 3-folds, and Donaldson invariants of 4-manifolds. We make conjectures on new universal structures common to many enumerative invariant theories. Any such theory has two moduli spaces $\mathcal{M}$, $\mathcal{M}^{{\rm pl}}$, where the second author (see https://people.maths.ox.ac.uk/~joyce/hall.pdf) gives $H_*(\mathcal{M})$ the structure of a graded vertex algebra, and $H_*\big(\mathcal{M}^{{\rm pl}}\big)$ a graded Lie algebra, closely related to $H_*(\mathcal{M})$. The virtual classes $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ take values in $H_*\big(\mathcal{M}^{{\rm pl}}\big)$. In most such theories, defining $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ when $\mathcal{M}_\alpha^{{\rm st}}(\tau)\ne\mathcal{M}_\alpha^{{\rm ss}}(\tau)$ (in gauge theory, when the moduli space contains reducibles) is a difficult problem. We conjecture that there is a natural way to define invariants $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{\mathrm{inv}}$ in homology over $\mathbb{Q}$, with $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{\mathrm{inv}}=[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ when $\mathcal{M}_\alpha^{{\rm st}}(\tau)=\mathcal{M}_\alpha^{{\rm ss}}(\tau)$, and that these invariants satisfy a universal wall-crossing formula under change of stability condition $\tau$, written using the Lie bracket on $H_*\big(\mathcal{M}^{{\rm pl}}\big)$. We prove our conjectures for moduli spaces of representations of quivers without oriented cycles. Versions of our conjectures in algebraic geometry using Behrend–Fantechi virtual classes are proved in the sequel [arXiv:2111.04694].
Keywords: invariant, stability condition, vertex algebra, wall crossing formula, quiver.
Funding agency Grant number
Japan Society for the Promotion of Science JP16K05125
JP21K03246
Simons Foundation
This research was supported by the Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics. The third author was partially supported by JSPS Grant-in-Aid for Scientific Research numbers JP16K05125 and JP21K03246.
Received: November 22, 2021; in final form September 6, 2022; Published online September 23, 2022
Bibliographic databases:
Document Type: Article
MSC: 14D20, 17B69, 16G20
Language: English
Citation: Jacob Gross, Dominic Joyce, Yuuji Tanaka, “Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories”, SIGMA, 18 (2022), 068, 61 pp.
Citation in format AMSBIB
\Bibitem{GroJoyTan22}
\by Jacob~Gross, Dominic~Joyce, Yuuji~Tanaka
\paper Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories
\jour SIGMA
\yr 2022
\vol 18
\papernumber 068
\totalpages 61
\mathnet{http://mi.mathnet.ru/sigma1864}
\crossref{https://doi.org/10.3842/SIGMA.2022.068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4489089}
Linking options:
  • https://www.mathnet.ru/eng/sigma1864
  • https://www.mathnet.ru/eng/sigma/v18/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :25
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024