Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 067, 29 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.067
(Mi sigma1863)
 

This article is cited in 2 scientific papers (total in 2 papers)

De Finetti Theorems for the Unitary Dual Group

Isabelle Baraquina, Guillaume Cébronb, Uwe Franza, Laura Maassenc, Moritz Weberd

a Laboratoire de mathématiques de Besançon, UMR 6623, CNRS, Université Bourgogne Franche-Comté, 16 route de Gray, F-25000 Besançon, France
b Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
c RWTH Aachen University, Pontdriesch 10–16, 52062 Aachen, Germany
d Saarland University, Fachbereich Mathematik, Postfach 151150, D-66041 Saarbrücken, Germany
Full-text PDF (558 kB) Citations (2)
References:
Abstract: We prove several de Finetti theorems for the unitary dual group, also called the Brown algebra. Firstly, we provide a finite de Finetti theorem characterizing $R$-diagonal elements with an identical distribution. This is surprising, since it applies to finite sequences in contrast to the de Finetti theorems for classical and quantum groups; also, it does not involve any known independence notion. Secondly, considering infinite sequences in $W^*$-probability spaces, our characterization boils down to operator-valued free centered circular elements, as in the case of the unitary quantum group $U_n^+$. Thirdly, the above de Finetti theorems build on dual group actions, the natural action when viewing the Brown algebra as a dual group. However, we may also equip the Brown algebra with a bialgebra action, which is closer to the quantum group setting in a way. But then, we obtain a no-go de Finetti theorem: invariance under the bialgebra action of the Brown algebra yields zero sequences, in $W^*$-probability spaces. On the other hand, if we drop the assumption of faithful states in $W^*$-probability spaces, we obtain a non-trivial half a de Finetti theorem similar to the case of the dual group action.
Keywords: de Finetti theorem, distributional invariance, exchangeable, Brown algebra, unitary dual group, $R$-diagonal elements, free circular elements.
Funding agency Grant number
Deutsche Forschungsgemeinschaft
SFB-TRR 195
Agence Nationale de la Recherche ANR-19-CE40-0002
ANR-18-CE40-006
ANR-20-CE40-0008
German Academic Exchange Service (DAAD)
M.W. is supported by SFB-TRR 195 and DFG Heisenbergprogramm. I.B. and U.F. are supported by an ANR project (No. ANR-19-CE40-0002). G.C. is supported by the Project MESA (ANR-18-CE40-006) and by the Project STARS (ANR-20-CE40-0008) of the French National Research Agency (ANR). We acknowledge the DAAD Procope program held by Roland Vergnioux and the fifth author from 2019-2020.
Received: March 25, 2022; in final form August 31, 2022; Published online September 13, 2022
Bibliographic databases:
Document Type: Article
MSC: 46L54, 46L65, 60G09
Language: English
Citation: Isabelle Baraquin, Guillaume Cébron, Uwe Franz, Laura Maassen, Moritz Weber, “De Finetti Theorems for the Unitary Dual Group”, SIGMA, 18 (2022), 067, 29 pp.
Citation in format AMSBIB
\Bibitem{BarCebFra22}
\by Isabelle~Baraquin, Guillaume~C\'ebron, Uwe~Franz, Laura~Maassen, Moritz~Weber
\paper De Finetti Theorems for the Unitary Dual Group
\jour SIGMA
\yr 2022
\vol 18
\papernumber 067
\totalpages 29
\mathnet{http://mi.mathnet.ru/sigma1863}
\crossref{https://doi.org/10.3842/SIGMA.2022.067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4480649}
Linking options:
  • https://www.mathnet.ru/eng/sigma1863
  • https://www.mathnet.ru/eng/sigma/v18/p67
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :20
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024