Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 060, 31 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.060
(Mi sigma186)
 

This article is cited in 17 scientific papers (total in 17 papers)

Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel

Evgeny Mukhina, Vitaly Tarasovab, Alexander Varchenkoc

a Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, 402 North Blackford St, Indianapolis, IN 46202-3216, USA
b St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
c Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA
References:
Abstract: Let $M$ be the tensor product of finite-dimensional polynomial evaluation $Y(\mathfrak{gl}_N)$-modules. Consider the universal difference operator $\mathfrak D=\sum\limits_{k=0}^N (-1)^k\mathfrak T_k(u) e^{-k\partial _u }$ whose coefficients $\mathfrak T_k(u)\colon M\to M$ are the XXX transfer matrices associated with $M$. We show that the difference equation $\mathfrak D f=0$ for an $M$-valued function $f$ has a basis of solutions consisting of quasi-exponentials. We prove the same for the universal differential operator $D=\sum\limits_{k=0}^N (-1)^k\mathcal S_k(u)\partial_u^{N-k}$ whose coefficients $\mathcal S_k(u)\colon\mathcal M\to\mathcal M$ are the Gaudin transfer matrices associated with the tensor product $\mathcal M$ of finite-dimensional polynomial evaluation $\mathfrak{gl}_N[x]$-modules.
Keywords: Gaudin model; XXX model; universal differential operator.
Received: March 28, 2007; Published online April 25, 2007
Bibliographic databases:
Document Type: Article
MSC: 34M35; 82B23; 17B67
Language: English
Citation: Evgeny Mukhin, Vitaly Tarasov, Alexander Varchenko, “Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel”, SIGMA, 3 (2007), 060, 31 pp.
Citation in format AMSBIB
\Bibitem{MukTarVar07}
\by Evgeny Mukhin, Vitaly Tarasov, Alexander Varchenko
\paper Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel
\jour SIGMA
\yr 2007
\vol 3
\papernumber 060
\totalpages 31
\mathnet{http://mi.mathnet.ru/sigma186}
\crossref{https://doi.org/10.3842/SIGMA.2007.060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299861}
\zmath{https://zbmath.org/?q=an:1140.82015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200060}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234644}
Linking options:
  • https://www.mathnet.ru/eng/sigma186
  • https://www.mathnet.ru/eng/sigma/v3/p60
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:451
    Full-text PDF :71
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024