Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 048, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.048
(Mi sigma1844)
 

On the Monodromy Invariant Hermitian Form for $A$-Hypergeometric Systems

Carlo Verschoor

Department of Mathematics, Utrecht University, Utrecht, Budapestlaan 6, 3580 TA, The Netherlands
References:
Abstract: We will give an explicit construction of the invariant Hermitian form for the monodromy of an $A$-hypergeometric system given that there is a Mellin–Barnes basis of solutions.
Keywords: monodromy, $A$-hypergeometric functions, invariant Hermitian form.
Received: August 24, 2021; in final form June 22, 2022; Published online June 30, 2022
Bibliographic databases:
Document Type: Article
MSC: 14D05, 33C70
Language: English
Citation: Carlo Verschoor, “On the Monodromy Invariant Hermitian Form for $A$-Hypergeometric Systems”, SIGMA, 18 (2022), 048, 14 pp.
Citation in format AMSBIB
\Bibitem{Ver22}
\by Carlo~Verschoor
\paper On the Monodromy Invariant Hermitian Form for $A$-Hypergeometric Systems
\jour SIGMA
\yr 2022
\vol 18
\papernumber 048
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1844}
\crossref{https://doi.org/10.3842/SIGMA.2022.048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4445979}
Linking options:
  • https://www.mathnet.ru/eng/sigma1844
  • https://www.mathnet.ru/eng/sigma/v18/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:49
    Full-text PDF :14
    References:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024