Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 058, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.058
(Mi sigma184)
 

This article is cited in 5 scientific papers (total in 5 papers)

From $\mathfrak{su}(2)$ Gaudin Models to Integrable Tops

Matteo Petreraa, Orlando Ragniscobc

a Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, D-85747 Garching bei München, Germany
b Sezione INFN, Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
c Dipartimento di Fisica E. Amaldi, Università degli Studi Roma Tre
Full-text PDF (288 kB) Citations (5)
References:
Abstract: In the present paper we derive two well-known integrable cases of rigid body dynamics (the Lagrange top and the Clebsch system) performing an algebraic contraction on the two-body Lax matrices governing the (classical) $\mathfrak{su}(2)$ Gaudin models. The procedure preserves the linear $r$-matrix formulation of the ancestor models. We give the Lax representation of the resultingintegrable systems in terms of $\mathfrak{su}(2)$ Lax matrices with and elliptic dependencies on the spectral parameter. We finally give some results about the many-body extensions of the constructed systems.
Keywords: Gaudin models; spinning tops.
Received: March 13, 2006; Published online April 20, 2007
Bibliographic databases:
Document Type: Article
MSC: 70E17; 70E40; 37J35
Language: English
Citation: Matteo Petrera, Orlando Ragnisco, “From $\mathfrak{su}(2)$ Gaudin Models to Integrable Tops”, SIGMA, 3 (2007), 058, 14 pp.
Citation in format AMSBIB
\Bibitem{PetRag07}
\by Matteo Petrera, Orlando Ragnisco
\paper From $\mathfrak{su}(2)$ Gaudin Models to Integrable Tops
\jour SIGMA
\yr 2007
\vol 3
\papernumber 058
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma184}
\crossref{https://doi.org/10.3842/SIGMA.2007.058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299859}
\zmath{https://zbmath.org/?q=an:1131.70004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200058}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234837}
Linking options:
  • https://www.mathnet.ru/eng/sigma184
  • https://www.mathnet.ru/eng/sigma/v3/p58
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :64
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024