Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 040, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.040
(Mi sigma1834)
 

Dirac Operators for the Dunkl Angular Momentum Algebra

Kieran Calverta, Marcelo De Martinob

a Department of Mathematics, University of Manchester, UK
b Department of Electronics and Information Systems, University of Ghent, Belgium
References:
Abstract: We define a family of Dirac operators for the Dunkl angular momentum algebra depending on certain central elements of the group algebra of the Pin cover of the Weyl group inherent to the rational Cherednik algebra. We prove an analogue of Vogan's conjecture for this family of operators and use this to show that the Dirac cohomology, when non-zero, determines the central character of representations of the angular momentum algebra. Furthermore, interpreting this algebra in the framework of (deformed) Howe dualities, we show that the natural Dirac element we define yields, up to scalars, a square root of the angular part of the Calogero–Moser Hamiltonian.
Keywords: Dirac operators, Calogero–Moser angular momentum, rational Cherednik algebras.
Funding agency Grant number
Bijzonder Onderzoeksfonds (BOF) BOF20/PDO/058
This research was supported by Heilbronn Institute for Mathematical Research and the special research fund (BOF) from Ghent University [BOF20/PDO/058].
Received: November 10, 2021; in final form May 24, 2022; Published online June 1, 2022
Bibliographic databases:
Document Type: Article
Language: English
Citation: Kieran Calvert, Marcelo De Martino, “Dirac Operators for the Dunkl Angular Momentum Algebra”, SIGMA, 18 (2022), 040, 18 pp.
Citation in format AMSBIB
\Bibitem{CalDe 22}
\by Kieran~Calvert, Marcelo~De Martino
\paper Dirac Operators for the Dunkl Angular Momentum Algebra
\jour SIGMA
\yr 2022
\vol 18
\papernumber 040
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1834}
\crossref{https://doi.org/10.3842/SIGMA.2022.040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4431382}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85133846588}
Linking options:
  • https://www.mathnet.ru/eng/sigma1834
  • https://www.mathnet.ru/eng/sigma/v18/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025