Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 039, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.039
(Mi sigma1833)
 

Doubly Exotic $N$th-Order Superintegrable Classical Systems Separating in Cartesian Coordinates

İsmet Yurduşena, Adrián Mauricio Escobar-Ruizb, Irlanda Palma y Meza Montoyab

a Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
b Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México, CDMX, 09340 México
References:
Abstract: Superintegrable classical Hamiltonian systems in two-dimensional Euclidean space $E_2$ are explored. The study is restricted to Hamiltonians allowing separation of variables $V(x,y)=V_1(x)+V_2(y)$ in Cartesian coordinates. In particular, the Hamiltonian $\mathcal H$ admits a polynomial integral of order $N>2$. Only doubly exotic potentials are considered. These are potentials where none of their separated parts obey any linear ordinary differential equation. An improved procedure to calculate these higher-order superintegrable systems is described in detail. The two basic building blocks of the formalism are non-linear compatibility conditions and the algebra of the integrals of motion. The case $N=5$, where doubly exotic confining potentials appear for the first time, is completely solved to illustrate the present approach. The general case $N>2$ and a formulation of inverse problem in superintegrability are briefly discussed as well.
Keywords: integrability in classical mechanics, higher-order superintegrability, separation of variables, exotic potentials.
Received: December 18, 2021; in final form May 16, 2022; Published online May 27, 2022
Bibliographic databases:
Document Type: Article
MSC: 70H06, 70H33, 70H50
Language: English
Citation: İsmet Yurduşen, Adrián Mauricio Escobar-Ruiz, Irlanda Palma y Meza Montoya, “Doubly Exotic $N$th-Order Superintegrable Classical Systems Separating in Cartesian Coordinates”, SIGMA, 18 (2022), 039, 20 pp.
Citation in format AMSBIB
\Bibitem{YurEscPal22}
\by {\. I}smet~Yurdu{\c s}en, Adri\'an~Mauricio~Escobar-Ruiz, Irlanda~Palma y Meza Montoya
\paper Doubly Exotic $N$th-Order Superintegrable Classical Systems Separating in Cartesian Coordinates
\jour SIGMA
\yr 2022
\vol 18
\papernumber 039
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma1833}
\crossref{https://doi.org/10.3842/SIGMA.2022.039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4429919}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85133834226}
Linking options:
  • https://www.mathnet.ru/eng/sigma1833
  • https://www.mathnet.ru/eng/sigma/v18/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025