Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 038, 29 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.038
(Mi sigma1832)
 

Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems

Misael Avendaño-Camacho, Claudio César García-Mendoza, José Crispín Ruiz-Pantaleón, Eduardo Velasco-Barreras

Departamento de Matemáticas, Universidad de Sonora, México
References:
Abstract: Some positive answers to the problem of endowing a dynamical system with a Hamiltonian formulation are presented within the class of Poisson structures in a geometric framework. We address this problem on orientable manifolds and by using decomposable Poisson structures. In the first case, the existence of a Hamiltonian formulation is ensured under the vanishing of some topological obstructions, improving a result of Gao. In the second case, we apply a variant of the Hojman construction to solve the problem for vector fields admitting a transversally invariant metric and, in particular, for infinitesimal generators of proper actions. Finally, we also consider the hamiltonization problem for Lie group actions and give solutions in the particular case in which the acting Lie group is a low-dimensional torus.
Keywords: Hamiltonian formulation, Poisson manifold, first integral, unimodularity, transversally invariant metric, symmetry.
Funding agency Grant number
CONACYT - Consejo Nacional de Ciencia y Tecnología CB2015 no. 258302
University of Sonora (UNISON) USO315007338
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro E-26/202.411/2019
E-26/202.412/2019
This research was partially supported by the Mexican National Council of Science and Technology (CONACYT) under the grant CB2015 no. 258302 and the University of Sonora (UNISON) under the project no. USO315007338. J.C.R.P. thanks CONACyT for a postdoctoral fellowship held during the production of this work. E.V.B. was supported by FAPERJ grants E-26/202.411/2019 and E-26/202.412/2019.
Received: March 2, 2021; in final form May 10, 2022; Published online May 20, 2022
Bibliographic databases:
Document Type: Article
Language: English
Citation: Misael Avendaño-Camacho, Claudio César García-Mendoza, José Crispín Ruiz-Pantaleón, Eduardo Velasco-Barreras, “Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems”, SIGMA, 18 (2022), 038, 29 pp.
Citation in format AMSBIB
\Bibitem{AveGarRui22}
\by Misael~Avenda\~no-Camacho, Claudio~C\'esar~Garc{\'\i}a-Mendoza, Jos\'e~Crisp{\'\i}n~Ruiz-Pantale\'on, Eduardo~Velasco-Barreras
\paper Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems
\jour SIGMA
\yr 2022
\vol 18
\papernumber 038
\totalpages 29
\mathnet{http://mi.mathnet.ru/sigma1832}
\crossref{https://doi.org/10.3842/SIGMA.2022.038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4425010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85131084897}
Linking options:
  • https://www.mathnet.ru/eng/sigma1832
  • https://www.mathnet.ru/eng/sigma/v18/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025