|
This article is cited in 2 scientific papers (total in 2 papers)
Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Restriction to Subgroups
Ryosuke Nakahama Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
Abstract:
Let $(G,G_1)$ be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces $D_1=G_1/K_1\subset D=G/K$, realized as bounded symmetric domains in complex vector spaces $\mathfrak{p}^+_1\subset\mathfrak{p}^+$ respectively. Then the universal covering group $\widetilde{G}$ of $G$ acts unitarily on the weighted Bergman space $\mathcal{H}_\lambda(D)\subset\mathcal{O}(D)$ on $D$. Its restriction to the subgroup $\widetilde{G}_1$ decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua–Kostant–Schmid–Kobayashi's formula in terms of the $K_1$-decomposition of the space $\mathcal{P}(\mathfrak{p}^+_2)$ of polynomials on the orthogonal complement $\mathfrak{p}^+_2$ of $\mathfrak{p}^+_1$ in $\mathfrak{p}^+$. The object of this article is to compute explicitly the inner product $\big\langle f(x_2),{\rm e}^{(x|\overline{z})_{\mathfrak{p}^+}}\big\rangle_\lambda$ for $f(x_2)\in\mathcal{P}(\mathfrak{p}^+_2)$, $x=(x_1,x_2)$, $z\in\mathfrak{p}^+=\mathfrak{p}^+_1\oplus\mathfrak{p}^+_2$. For example, when $\mathfrak{p}^+$, $\mathfrak{p}^+_2$ are of tube type and $f(x_2)=\det(x_2)^k$, we compute this inner product explicitly by introducing a multivariate generalization of Gauss' hypergeometric polynomials ${}_2F_1$. Also, as an application, we construct explicitly $\widetilde{G}_1$-intertwining operators (symmetry breaking operators) $\mathcal{H}_\lambda(D)|_{\widetilde{G}_1}\to\mathcal{H}_\mu(D_1)$ from holomorphic discrete series representations of $\widetilde{G}$ to those of $\widetilde{G}_1$, which are unique up to constant multiple for sufficiently large $\lambda$.
Keywords:
weighted Bergman spaces, holomorphic discrete series representations, branching laws, intertwining operators, symmetry breaking operators, highest weight modules.
Received: June 14, 2021; in final form April 6, 2022; Published online May 3, 2022
Citation:
Ryosuke Nakahama, “Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Restriction to Subgroups”, SIGMA, 18 (2022), 033, 105 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1827 https://www.mathnet.ru/eng/sigma/v18/p33
|
Statistics & downloads: |
Abstract page: | 46 | Full-text PDF : | 13 | References: | 14 |
|