Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 029, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.029
(Mi sigma1823)
 

A Characterisation of Smooth Maps into a Homogeneous Space

Anthony D. Blaom

University of Auckland, New Zealand
References:
Abstract: We generalize Cartan's logarithmic derivative of a smooth map from a manifold into a Lie group $G$ to smooth maps into a homogeneous space $M=G/H$, and determine the global monodromy obstruction to reconstructing such maps from infinitesimal data. The logarithmic derivative of the embedding of a submanifold $\Sigma \subset M$ becomes an invariant of $\Sigma $ under symmetries of the “Klein geometry” $M$ whose analysis is taken up in [SIGMA 14 (2018), 062, 36 pages, arXiv:1703.03851].
Keywords: homogeneous space, subgeometry, Lie algebroids, Cartan geometry, Klein geometry, logarithmic derivative, Darboux derivative, differential invariants.
Received: June 25, 2021; in final form April 4, 2022; Published online April 10, 2022
Bibliographic databases:
Document Type: Article
MSC: 53C99, 22A99, 53D17
Language: English
Citation: Anthony D. Blaom, “A Characterisation of Smooth Maps into a Homogeneous Space”, SIGMA, 18 (2022), 029, 15 pp.
Citation in format AMSBIB
\Bibitem{Bla22}
\by Anthony~D.~Blaom
\paper A Characterisation of Smooth Maps into a Homogeneous Space
\jour SIGMA
\yr 2022
\vol 18
\papernumber 029
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma1823}
\crossref{https://doi.org/10.3842/SIGMA.2022.029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4404885}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129303877}
Linking options:
  • https://www.mathnet.ru/eng/sigma1823
  • https://www.mathnet.ru/eng/sigma/v18/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:43
    Full-text PDF :12
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024