Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 026, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.026
(Mi sigma1820)
 

This article is cited in 1 scientific paper (total in 1 paper)

Cohomology of $\mathfrak{sl}_3$ and $\mathfrak{gl}_3$ with Coefficients in Simple Modules and Weyl Modules in Positive Characteristics

Sherali Sh. Ibraev

Korkyt Ata Kyzylorda University, Aiteke bie St., 29A, 120014, Kzylorda, Kazakhstan
Full-text PDF (383 kB) Citations (1)
References:
Abstract: We calculate the cohomology of $\mathfrak{sl}_3(k)$ over an algebraically closed field $k$ of characteristic $p>3$ with coefficients in simple modules and Weyl modules. We also give descriptions of the corresponding cohomology of $\mathfrak{gl}_3(k)$.
Keywords: Lie algebra, simple module, cohomology.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP08855935
This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant No AP08855935).
Received: August 12, 2021; in final form March 26, 2022; Published online March 30, 2022
Bibliographic databases:
Document Type: Article
MSC: 17B20, 17B45, 20G05
Language: English
Citation: Sherali Sh. Ibraev, “Cohomology of $\mathfrak{sl}_3$ and $\mathfrak{gl}_3$ with Coefficients in Simple Modules and Weyl Modules in Positive Characteristics”, SIGMA, 18 (2022), 026, 17 pp.
Citation in format AMSBIB
\Bibitem{Ibr22}
\by Sherali~Sh.~Ibraev
\paper Cohomology of $\mathfrak{sl}_3$ and $\mathfrak{gl}_3$ with Coefficients in Simple Modules and Weyl Modules in Positive Characteristics
\jour SIGMA
\yr 2022
\vol 18
\papernumber 026
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1820}
\crossref{https://doi.org/10.3842/SIGMA.2022.026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4401804}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85126032297}
Linking options:
  • https://www.mathnet.ru/eng/sigma1820
  • https://www.mathnet.ru/eng/sigma/v18/p26
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :27
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024