Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 056, 30 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.056
(Mi sigma182)
 

This article is cited in 4 scientific papers (total in 4 papers)

Macdonald Polynomials and Multivariable Basic Hypergeometric Series

Michael J. Schlosser

Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Vienna, Austria
Full-text PDF (455 kB) Citations (4)
References:
Abstract: We study Macdonald polynomials from a basic hypergeometric series point of view. In particular, we show that the Pieri formula for Macdonald polynomials and its recently discovered inverse, a recursion formula for Macdonald polynomials, both represent multivariable extensions of the terminating very-well-poised ${}_6\phi_5$ summation formula. We derive several new related identities including multivariate extensions of Jackson's very-well-poised ${}_8\phi_7$ summation. Motivated by our basic hypergeometric analysis, we propose an extension of Macdonald polynomials to Macdonald symmetric functions indexed by partitions with complex parts. These appear to possess nice properties.
Keywords: Macdonald polynomials; Pieri formula; recursion formula; matrix inversion; basic hypergeometric series; ${}_6\phi_5$ summation; Jackson’s ${}_8\phi_7$ summation; $A_{n-1}$ series.
Received: November 21, 2006; Published online March 30, 2007
Bibliographic databases:
Document Type: Article
MSC: 33D52; 15A09; 33D67
Language: English
Citation: Michael J. Schlosser, “Macdonald Polynomials and Multivariable Basic Hypergeometric Series”, SIGMA, 3 (2007), 056, 30 pp.
Citation in format AMSBIB
\Bibitem{Sch07}
\by Michael J.~Schlosser
\paper Macdonald Polynomials and Multivariable Basic Hypergeometric Series
\jour SIGMA
\yr 2007
\vol 3
\papernumber 056
\totalpages 30
\mathnet{http://mi.mathnet.ru/sigma182}
\crossref{https://doi.org/10.3842/SIGMA.2007.056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299857}
\zmath{https://zbmath.org/?q=an:05241569}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200056}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234711}
Linking options:
  • https://www.mathnet.ru/eng/sigma182
  • https://www.mathnet.ru/eng/sigma/v3/p56
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :44
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024