Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2022, Volume 18, 017, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2022.017
(Mi sigma1811)
 

The Exponential Map for Hopf Algebras

Ghaliah Alhamzia, Edwin Beggsb

a Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
b Department of Mathematics, Swansea University, Wales, UK
References:
Abstract: We give an analogue of the classical exponential map on Lie groups for Hopf $*$-algebras with differential calculus. The major difference with the classical case is the interpretation of the value of the exponential map, classically an element of the Lie group. We give interpretations as states on the Hopf algebra, elements of a Hilbert $C^{*} $-bimodule of $\frac{1}{2}$ densities and elements of the dual Hopf algebra. We give examples for complex valued functions on the groups $S_{3}$ and $\mathbb{Z}$, Woronowicz's matrix quantum group $\mathbb{C}_{q}[SU_2] $ and the Sweedler–Taft algebra.
Keywords: Hopf algebra, differential calculus, Lie algebra, exponential map.
Received: June 15, 2021; in final form February 16, 2022; Published online March 9, 2022
Bibliographic databases:
Document Type: Article
MSC: 16T05, 46L87, 58B32
Language: English
Citation: Ghaliah Alhamzi, Edwin Beggs, “The Exponential Map for Hopf Algebras”, SIGMA, 18 (2022), 017, 17 pp.
Citation in format AMSBIB
\Bibitem{AlhBeg22}
\by Ghaliah~Alhamzi, Edwin~Beggs
\paper The Exponential Map for Hopf Algebras
\jour SIGMA
\yr 2022
\vol 18
\papernumber 017
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1811}
\crossref{https://doi.org/10.3842/SIGMA.2022.017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4391479}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000767577400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85126809264}
Linking options:
  • https://www.mathnet.ru/eng/sigma1811
  • https://www.mathnet.ru/eng/sigma/v18/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :15
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024