Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 110, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.110
(Mi sigma1792)
 

This article is cited in 1 scientific paper (total in 1 paper)

A Composite Order Generalization of Modular Moonshine

Satoru Urano

Division of Mathematics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571 Japan
Full-text PDF (381 kB) Citations (1)
References:
Abstract: We introduce a generalization of Brauer character to allow arbitrary finite length modules over discrete valuation rings. We show that the generalized super Brauer character of Tate cohomology is a linear combination of trace functions. Using this result, we find a counterexample to a conjecture of Borcherds about vanishing of Tate cohomology for Fricke elements of the Monster.
Keywords: moonshine, modular function, Brauer character, vertex operator algebra.
Received: March 31, 2021; in final form December 21, 2021; Published online December 24, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Satoru Urano, “A Composite Order Generalization of Modular Moonshine”, SIGMA, 17 (2021), 110, 15 pp.
Citation in format AMSBIB
\Bibitem{Ura21}
\by Satoru~Urano
\paper A Composite Order Generalization of Modular Moonshine
\jour SIGMA
\yr 2021
\vol 17
\papernumber 110
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma1792}
\crossref{https://doi.org/10.3842/SIGMA.2021.110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000735989600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122310261}
Linking options:
  • https://www.mathnet.ru/eng/sigma1792
  • https://www.mathnet.ru/eng/sigma/v17/p110
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025