Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 106, 35 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.106
(Mi sigma1788)
 

How to Draw a Correlation Function

Nikolay Bogolyubov, Cyril Malyshev

St.-Petersburg Department of Steklov Institute of Mathematics, RAS, Fontanka 27, St.-Petersburg, Russia
References:
Abstract: We discuss connection between the $XX0$ Heisenberg spin chain and some aspects of enumerative combinatorics. The representation of the Bethe wave functions via the Schur functions allows to apply the theory of symmetric functions to the calculation of the correlation functions. We provide a combinatorial derivation of the dynamical auto-correlation functions and visualise them in terms of nests of self-avoiding lattice paths. Asymptotics of the auto-correlation functions are obtained in the double scaling limit provided that the evolution parameter is large.
Keywords: $XX0$ Heisenberg spin chain, correlation functions, enumerative combinatorics.
Funding agency Grant number
Russian Science Foundation 18-11-00297
This work was supported by the Russian Science Foundation (Grant 18-11-00297).
Received: June 5, 2021; in final form December 2, 2021; Published online December 9, 2021
Bibliographic databases:
Document Type: Article
MSC: 05A19, 05E05, 82B23
Language: English
Citation: Nikolay Bogolyubov, Cyril Malyshev, “How to Draw a Correlation Function”, SIGMA, 17 (2021), 106, 35 pp.
Citation in format AMSBIB
\Bibitem{BogMal21}
\by Nikolay~Bogolyubov, Cyril~Malyshev
\paper How to Draw a Correlation Function
\jour SIGMA
\yr 2021
\vol 17
\papernumber 106
\totalpages 35
\mathnet{http://mi.mathnet.ru/sigma1788}
\crossref{https://doi.org/10.3842/SIGMA.2021.106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000730243800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122279064}
Linking options:
  • https://www.mathnet.ru/eng/sigma1788
  • https://www.mathnet.ru/eng/sigma/v17/p106
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :19
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024