Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 105, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.105
(Mi sigma1787)
 

A Sharp Lieb–Thirring Inequality for Functional Difference Operators

Ari Laptevab, Lukas Schimmerc

a Department of Mathematics, Imperial College London, London SW7 2AZ, UK
b Saint Petersburg State University, Saint Petersburg, Russia
c Institut Mittag–Leffler, The Royal Swedish Academy of Sciences, 182 60 Djursholm, Sweden
References:
Abstract: We prove sharp Lieb–Thirring type inequalities for the eigenvalues of a class of one-dimensional functional difference operators associated to mirror curves. We furthermore prove that the bottom of the essential spectrum of these operators is a resonance state.
Keywords: Lieb–Thirring inequality, functional difference operator, semigroup property.
Funding agency Grant number
Russian Science Foundation 18-11-0032
Royal Swedish Academy of Sciences 2017-04736
A. Laptev was partially supported by RSF grant 18-11-0032. L. Schimmer was supported by VR grant 2017-04736 at the Royal Swedish Academy of Sciences.
Received: September 12, 2021; in final form November 25, 2021; Published online December 6, 2021
Bibliographic databases:
Document Type: Article
MSC: 47A75, 81Q10
Language: English
Citation: Ari Laptev, Lukas Schimmer, “A Sharp Lieb–Thirring Inequality for Functional Difference Operators”, SIGMA, 17 (2021), 105, 10 pp.
Citation in format AMSBIB
\Bibitem{LapSch21}
\by Ari~Laptev, Lukas~Schimmer
\paper A Sharp Lieb--Thirring Inequality for Functional Difference Operators
\jour SIGMA
\yr 2021
\vol 17
\papernumber 105
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma1787}
\crossref{https://doi.org/10.3842/SIGMA.2021.105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000728975400001}
Linking options:
  • https://www.mathnet.ru/eng/sigma1787
  • https://www.mathnet.ru/eng/sigma/v17/p105
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :22
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024