Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 093, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.093
(Mi sigma1775)
 

This article is cited in 2 scientific papers (total in 2 papers)

A Revisit to the ABS $\mathrm{H2}$ Equation

Aye Aye Cho, Maebel Mesfun, Da-Jun Zhang

Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
Full-text PDF (483 kB) Citations (2)
References:
Abstract: In this paper we revisit the Adler–Bobenko–Suris $\mathrm{H2}$ equation. The $\mathrm{H2}$ equation is linearly related to the $S^{(0,0)}$ and $S^{(1,0)}$ variables in the Cauchy matrix scheme. We elaborate the coupled quad-system of $S^{(0,0)}$ and $S^{(1,0)}$ in terms of their $3$-dimensional consistency, Lax pair, bilinear form and continuum limits. It is shown that $S^{(1,0)}$ itself satisfies a $9$-point lattice equation and in continuum limit $S^{(1,0)}$ is related to the eigenfunction in the Lax pair of the Korteweg–de Vries equation.
Keywords: $\mathrm{H2}$ equation, consistent around cube, Cauchy matrix approach, continuum limit, KdV equation.
Funding agency Grant number
National Natural Science Foundation of China 11631007
11875040
Science and Technology Commission of Shanghai Municipality 20590742900
This project is supported by the NSF of China (Nos. 11631007 and 11875040) and Science and technology innovation plan of Shanghai (No. 20590742900).
Received: June 25, 2021; in final form October 13, 2021; Published online October 18, 2021
Bibliographic databases:
Document Type: Article
MSC: 35Q51, 35Q55, 37K60
Language: English
Citation: Aye Aye Cho, Maebel Mesfun, Da-Jun Zhang, “A Revisit to the ABS $\mathrm{H2}$ Equation”, SIGMA, 17 (2021), 093, 19 pp.
Citation in format AMSBIB
\Bibitem{ChoMesZha21}
\by Aye~Aye~Cho, Maebel~Mesfun, Da-Jun~Zhang
\paper A Revisit to the ABS $\mathrm{H2}$ Equation
\jour SIGMA
\yr 2021
\vol 17
\papernumber 093
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma1775}
\crossref{https://doi.org/10.3842/SIGMA.2021.093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000750808200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122295750}
Linking options:
  • https://www.mathnet.ru/eng/sigma1775
  • https://www.mathnet.ru/eng/sigma/v17/p93
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :15
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024