Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 051, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.051
(Mi sigma177)
 

This article is cited in 8 scientific papers (total in 8 papers)

Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System

Francesco Fassò, Andrea Giacobbe

Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, 35131 Padova, Italy
Full-text PDF (400 kB) Citations (8)
References:
Abstract: Bifibrations, in symplectic geometry called also dual pairs, play a relevant role in the theory of superintegrable Hamiltonian systems. We prove the existence of an analogous bifibrated geometry in dynamical systems with a symmetry group such that the reduced dynamics is periodic. The integrability of such systems has been proven by M. Field and J. Hermans with a reconstruction technique. We apply the result to the nonholonomic system of a ball rolling on a surface of revolution.
Keywords: systems with symmetry; reconstruction; integrable systems; nonholonomic systems.
Received: November 20, 2006; in final form March 15, 2007; Published online March 22, 2007
Bibliographic databases:
Document Type: Article
MSC: 37J35; 70H33
Language: English
Citation: Francesco Fassò, Andrea Giacobbe, “Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System”, SIGMA, 3 (2007), 051, 12 pp.
Citation in format AMSBIB
\Bibitem{FasGia07}
\by Francesco Fass\`o, Andrea Giacobbe
\paper Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a~Nonholonomic
System
\jour SIGMA
\yr 2007
\vol 3
\papernumber 051
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma177}
\crossref{https://doi.org/10.3842/SIGMA.2007.051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299852}
\zmath{https://zbmath.org/?q=an:1137.37029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234670}
Linking options:
  • https://www.mathnet.ru/eng/sigma177
  • https://www.mathnet.ru/eng/sigma/v3/p51
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :60
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024