Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 067, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.067
(Mi sigma1749)
 

This article is cited in 1 scientific paper (total in 1 paper)

A New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves

Peter H. van der Kamp

Department of Mathematics and Statistics, La Trobe University, Victoria 3086, Australia
Full-text PDF (436 kB) Citations (1)
References:
Abstract: For cubic pencils we define the notion of an involution curve. This is a curve which intersects each curve of the pencil in exactly one non-base point of the pencil. Involution curves can be used to construct integrable maps of the plane which leave invariant a cubic pencil.
Keywords: integrable map of the plane, Manin transformation, Bertini involution, invariant, pencil of cubic curves.
Received: January 15, 2021; in final form July 2, 2021; Published online July 13, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Peter H. van der Kamp, “A New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves”, SIGMA, 17 (2021), 067, 14 pp.
Citation in format AMSBIB
\Bibitem{Van21}
\by Peter~H.~van der Kamp
\paper A New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves
\jour SIGMA
\yr 2021
\vol 17
\papernumber 067
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1749}
\crossref{https://doi.org/10.3842/SIGMA.2021.067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000672470000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111023232}
Linking options:
  • https://www.mathnet.ru/eng/sigma1749
  • https://www.mathnet.ru/eng/sigma/v17/p67
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :21
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024