Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 065, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.065
(Mi sigma1747)
 

This article is cited in 3 scientific papers (total in 3 papers)

New Techniques for Worldline Integration

James P. Edwardsa, C. Moctezuma Mataa, Uwe Müllerb, Christian Schuberta

a Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacan, Mexico
b Brandenburg an der Havel, Brandenburg, Germany
Full-text PDF (980 kB) Citations (3)
References:
Abstract: The worldline formalism provides an alternative to Feynman diagrams in the construction of amplitudes and effective actions that shares some of the superior properties of the organization of amplitudes in string theory. In particular, it allows one to write down integral representations combining the contributions of large classes of Feynman diagrams of different topologies. However, calculating these integrals analytically without splitting them into sectors corresponding to individual diagrams poses a formidable mathematical challenge. We summarize the history and state of the art of this problem, including some natural connections to the theory of Bernoulli numbers and polynomials and multiple zeta values.
Keywords: worldline formalism, Bernoulli numbers, Bernoulli polynomials, Feynman diagram.
Received: March 1, 2021; in final form June 23, 2021; Published online July 3, 2021
Bibliographic databases:
Document Type: Article
MSC: 11B68, 33C65, 81Q30
Language: English
Citation: James P. Edwards, C. Moctezuma Mata, Uwe Müller, Christian Schubert, “New Techniques for Worldline Integration”, SIGMA, 17 (2021), 065, 19 pp.
Citation in format AMSBIB
\Bibitem{EdwMatMul21}
\by James~P.~Edwards, C.~Moctezuma~Mata, Uwe~M\"uller, Christian~Schubert
\paper New Techniques for Worldline Integration
\jour SIGMA
\yr 2021
\vol 17
\papernumber 065
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma1747}
\crossref{https://doi.org/10.3842/SIGMA.2021.065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000669646500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110284900}
Linking options:
  • https://www.mathnet.ru/eng/sigma1747
  • https://www.mathnet.ru/eng/sigma/v17/p65
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :21
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024