Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 064, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.064
(Mi sigma1746)
 

Generalized Gross–Neveu Universality Class with Non-Abelian Symmetry

John A. Gracey

Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, UK
References:
Abstract: We use the large $N$ critical point formalism to compute $d$-dimensional critical exponents at several orders in $1/N$ in an Ising Gross–Neveu universality class where the core interaction includes a Lie group generator. Specifying a particular symmetry group or taking the abelian limit of the final exponents recovers known results but also provides expressions for any Lie group or fermion representation.
Keywords: critical exponents, large $N$ expansion, renormalization.
Funding agency Grant number
Deutsche Forschungsgemeinschaft
Science and Technology Facilities Council ST/T000988/1
This work was fully supported by a DFG Mercator Fellowship and in part with the STFC Consolidated ST/T000988/1.
Received: February 26, 2021; in final form June 18, 2021; Published online June 29, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: John A. Gracey, “Generalized Gross–Neveu Universality Class with Non-Abelian Symmetry”, SIGMA, 17 (2021), 064, 20 pp.
Citation in format AMSBIB
\Bibitem{Gra21}
\by John~A.~Gracey
\paper Generalized Gross--Neveu Universality Class with Non-Abelian Symmetry
\jour SIGMA
\yr 2021
\vol 17
\papernumber 064
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma1746}
\crossref{https://doi.org/10.3842/SIGMA.2021.064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000669646500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109506504}
Linking options:
  • https://www.mathnet.ru/eng/sigma1746
  • https://www.mathnet.ru/eng/sigma/v17/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :17
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024