Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 058, 45 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.058
(Mi sigma1741)
 

This article is cited in 18 scientific papers (total in 18 papers)

Integrable $\mathcal{E}$-Models, $4\mathrm{d}$ Chern–Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects

Sylvain Lacroixab, Benoît Vicedoc

a Zentrum für Mathematische Physik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
b II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
c Department of Mathematics, University of York, York YO10 5DD, UK
References:
Abstract: We construct the actions of a very broad family of $2\mathrm{d}$ integrable $\sigma$-models. Our starting point is a universal $2\mathrm{d}$ action obtained in [arXiv:2008.01829] using the framework of Costello and Yamazaki based on $4\mathrm{d}$ Chern–Simons theory. This $2\mathrm{d}$ action depends on a pair of $2\mathrm{d}$ fields $h$ and $\mathcal{L}$, with $\mathcal{L}$ depending rationally on an auxiliary complex parameter, which are tied together by a constraint. When the latter can be solved for $\mathcal{L}$ in terms of $h$ this produces a $2\mathrm{d}$ integrable field theory for the $2\mathrm{d}$ field $h$ whose Lax connection is given by $\mathcal{L}(h)$. We construct a general class of solutions to this constraint and show that the resulting $2\mathrm{d}$ integrable field theories can all naturally be described as $\mathcal{E}$-models.
Keywords: $4\mathrm{d}$ Chern–Simons theory, $\mathcal E$-models, affine Gaudin models, integrable $\sigma$-models.
Funding agency Grant number
Deutsche Forschungsgemeinschaft 390833306
The work of S.L. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306.
Received: December 7, 2020; in final form May 31, 2021; Published online June 10, 2021
Bibliographic databases:
Document Type: Article
MSC: 17B80, 37K05, 37K10
Language: English
Citation: Sylvain Lacroix, Benoît Vicedo, “Integrable $\mathcal{E}$-Models, $4\mathrm{d}$ Chern–Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects”, SIGMA, 17 (2021), 058, 45 pp.
Citation in format AMSBIB
\Bibitem{LacVic21}
\by Sylvain~Lacroix, Beno{\^\i}t~Vicedo
\paper Integrable $\mathcal{E}$-Models, $4\mathrm{d}$ Chern--Simons Theory and Affine Gaudin Models. I.~Lagrangian Aspects
\jour SIGMA
\yr 2021
\vol 17
\papernumber 058
\totalpages 45
\mathnet{http://mi.mathnet.ru/sigma1741}
\crossref{https://doi.org/10.3842/SIGMA.2021.058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000662981100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110944724}
Linking options:
  • https://www.mathnet.ru/eng/sigma1741
  • https://www.mathnet.ru/eng/sigma/v17/p58
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :23
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024