Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 050, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.050
(Mi sigma1733)
 

This article is cited in 1 scientific paper (total in 1 paper)

On $q$-Isomonodromic Deformations and $q$-Nekrasov Functions

Hajime Nagoya

School of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
Full-text PDF (454 kB) Citations (1)
References:
Abstract: We construct a fundamental system of a $q$-difference Lax pair of rank $N$ in terms of 5d Nekrasov functions with $q=t$. Our fundamental system degenerates by the limit $q\to 1$ to a fundamental system of a differential Lax pair, which yields the Fuji–Suzuki–Tsuda system. We introduce tau functions of our system as Fourier transforms of 5d Nekrasov functions. Using asymptotic expansions of the fundamental system at $0$ and $\infty$, we obtain several determinantal identities of the tau functions.
Keywords: isomonodromic deformations; Nekrasov functions; Painlevé equations; determinantal identities.
Funding agency Grant number
Japan Society for the Promotion of Science JP18K03326
This work is partially supported by JSPS KAKENHI Grant Number JP18K03326.
Received: June 2, 2020; in final form May 4, 2021; Published online May 13, 2021
Bibliographic databases:
Document Type: Article
MSC: 39A13, 33E17, 05A30
Language: English
Citation: Hajime Nagoya, “On $q$-Isomonodromic Deformations and $q$-Nekrasov Functions”, SIGMA, 17 (2021), 050, 21 pp.
Citation in format AMSBIB
\Bibitem{Nag21}
\by Hajime~Nagoya
\paper On $q$-Isomonodromic Deformations and $q$-Nekrasov Functions
\jour SIGMA
\yr 2021
\vol 17
\papernumber 050
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma1733}
\crossref{https://doi.org/10.3842/SIGMA.2021.050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000658207500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107198764}
Linking options:
  • https://www.mathnet.ru/eng/sigma1733
  • https://www.mathnet.ru/eng/sigma/v17/p50
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025