|
Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations
Jean-Louis Clerc, Khalid Koufany Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
Abstract:
Let $\mathbb S$ be a Clifford module for the complexified Clifford algebra $\mathbb{C}\ell(\mathbb R^n)$, $\mathbb S'$ its dual, $\rho$ and $\rho'$ be the corresponding representations of the spin group $\mathrm{Spin}(n)$. The group $G= \mathrm{Spin}(1,n+1)$ is a (twofold) covering of the conformal group of $\mathbb R^n$. For $\lambda, \mu\in \mathbb C$, let $\pi_{\rho, \lambda}$ (resp. $\pi_{\rho',\mu}$) be the spinorial representation of $G$ realized on a (subspace of) $C^\infty(\mathbb R^n,\mathbb S)$ (resp. $C^\infty(\mathbb R^n,\mathbb S')$). For $0\leq k\leq n$ and $m\in \mathbb N$, we construct a symmetry breaking differential operator $B_{k;\lambda,\mu}^{(m)}$ from $C^\infty(\mathbb R^n \times \mathbb R^n,\mathbb{S}\,\otimes\, \mathbb{S}')$ into $C^\infty(\mathbb R^n, \Lambda^*_k(\mathbb R^n) \otimes \mathbb{C})$ which intertwines the representations $\pi_{\rho, \lambda}\otimes \pi_{\rho',\mu} $ and $\pi_{\tau^*_k,\lambda+\mu+2m}$, where $\tau^*_k$ is the representation of $\mathrm{Spin}(n)$ on the space $\Lambda^*_k(\mathbb R^n) \otimes \mathbb{C}$ of complex-valued alternating $k$-forms on $\mathbb{R}^n$.
Keywords:
Clifford algebra, spinors, tensor product, conformal analysis, symmetry breaking differential operators.
Received: January 12, 2021; in final form May 6, 2021; Published online May 13, 2021
Citation:
Jean-Louis Clerc, Khalid Koufany, “Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations”, SIGMA, 17 (2021), 049, 23 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1732 https://www.mathnet.ru/eng/sigma/v17/p49
|
|