Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 049, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.049
(Mi sigma1732)
 

Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations

Jean-Louis Clerc, Khalid Koufany

Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
References:
Abstract: Let $\mathbb S$ be a Clifford module for the complexified Clifford algebra $\mathbb{C}\ell(\mathbb R^n)$, $\mathbb S'$ its dual, $\rho$ and $\rho'$ be the corresponding representations of the spin group $\mathrm{Spin}(n)$. The group $G= \mathrm{Spin}(1,n+1)$ is a (twofold) covering of the conformal group of $\mathbb R^n$. For $\lambda, \mu\in \mathbb C$, let $\pi_{\rho, \lambda}$ (resp. $\pi_{\rho',\mu}$) be the spinorial representation of $G$ realized on a (subspace of) $C^\infty(\mathbb R^n,\mathbb S)$ (resp. $C^\infty(\mathbb R^n,\mathbb S')$). For $0\leq k\leq n$ and $m\in \mathbb N$, we construct a symmetry breaking differential operator $B_{k;\lambda,\mu}^{(m)}$ from $C^\infty(\mathbb R^n \times \mathbb R^n,\mathbb{S}\,\otimes\, \mathbb{S}')$ into $C^\infty(\mathbb R^n, \Lambda^*_k(\mathbb R^n) \otimes \mathbb{C})$ which intertwines the representations $\pi_{\rho, \lambda}\otimes \pi_{\rho',\mu} $ and $\pi_{\tau^*_k,\lambda+\mu+2m}$, where $\tau^*_k$ is the representation of $\mathrm{Spin}(n)$ on the space $\Lambda^*_k(\mathbb R^n) \otimes \mathbb{C}$ of complex-valued alternating $k$-forms on $\mathbb{R}^n$.
Keywords: Clifford algebra, spinors, tensor product, conformal analysis, symmetry breaking differential operators.
Received: January 12, 2021; in final form May 6, 2021; Published online May 13, 2021
Bibliographic databases:
Document Type: Article
MSC: 43A85, 58J70, 33J45
Language: English
Citation: Jean-Louis Clerc, Khalid Koufany, “Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations”, SIGMA, 17 (2021), 049, 23 pp.
Citation in format AMSBIB
\Bibitem{CleKou21}
\by Jean-Louis~Clerc, Khalid~Koufany
\paper Symmetry Breaking Differential Operators for Tensor Products of Spinorial Representations
\jour SIGMA
\yr 2021
\vol 17
\papernumber 049
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma1732}
\crossref{https://doi.org/10.3842/SIGMA.2021.049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000658206700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107230139}
Linking options:
  • https://www.mathnet.ru/eng/sigma1732
  • https://www.mathnet.ru/eng/sigma/v17/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025