Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 046, 42 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.046
(Mi sigma1729)
 

On Scalar and Ricci Curvatures

Gerard Besson, Sylvestre Gallot

CNRS-Université Grenoble Alpes, Institut Fourier, CS 40700, 38058 Grenoble cedex 09, France
References:
Abstract: The purpose of this report is to acknowledge the influence of M. Gromov's vision of geometry on our own works. It is two-fold: in the first part we aim at describing some results, in dimension 3, around the question: which open 3-manifolds carry a complete Riemannian metric of positive or non negative scalar curvature? In the second part we look for weak forms of the notion of “lower bounds of the Ricci curvature” on non necessarily smooth metric measure spaces. We describe recent results some of which are already posted in [arXiv:1712.08386] where we proposed to use the volume entropy. We also attempt to give a new synthetic version of Ricci curvature bounded below using Bishop–Gromov's inequality.
Keywords: scalar curvature, Ricci curvature, Whitehead 3-manifolds, infinite connected sums, Ricci flow, synthetic Ricci curvature, metric spaces, Bishop–Gromov inequality, Gromov-hyperbolic spaces, hyperbolic groups, Busemann spaces, CAT(0)-spaces.
Received: October 19, 2020; in final form April 5, 2021; Published online May 1, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Gerard Besson, Sylvestre Gallot, “On Scalar and Ricci Curvatures”, SIGMA, 17 (2021), 046, 42 pp.
Citation in format AMSBIB
\Bibitem{BesGal21}
\by Gerard~Besson, Sylvestre~Gallot
\paper On Scalar and Ricci Curvatures
\jour SIGMA
\yr 2021
\vol 17
\papernumber 046
\totalpages 42
\mathnet{http://mi.mathnet.ru/sigma1729}
\crossref{https://doi.org/10.3842/SIGMA.2021.046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000658203400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106042068}
Linking options:
  • https://www.mathnet.ru/eng/sigma1729
  • https://www.mathnet.ru/eng/sigma/v17/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025