|
Sobolev Lifting over Invariants
Adam Parusińskia, Armin Rainerb a Université Côte d'Azur, CNRS, LJAD, UMR 7351, 06108 Nice, France
b Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
Abstract:
We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $\sigma=(\sigma_1,\dots,\sigma_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $\overline{f} \colon \mathbb{R}^m \to V$ such that $f = \sigma \circ \overline{f}$ is of class $C^{d-1,1}$
is locally of Sobolev class $W^{1,p}$ for all $1 \le p < d/(d-1)$. In the case $m=1$ there always exists a continuous choice $\overline{f}$ for given $f\colon \mathbb{R} \to \sigma(V) \subseteq \mathbb{C}^n$. We give uniform bounds for the $W^{1,p}$-norm of $\overline{f}$ in terms of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $\overline{f}$ cannot have a higher Sobolev regularity and it even might not have bounded variation if $f$ is in a larger Hölder class.
Keywords:
Sobolev lifting over invariants, complex representations of finite groups, $Q$-valued Sobolev functions.
Received: November 4, 2020; in final form March 29, 2021; Published online April 10, 2021
Citation:
Adam Parusiński, Armin Rainer, “Sobolev Lifting over Invariants”, SIGMA, 17 (2021), 037, 31 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1720 https://www.mathnet.ru/eng/sigma/v17/p37
|
Statistics & downloads: |
Abstract page: | 59 | Full-text PDF : | 16 | References: | 19 |
|