Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 037, 31 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.037
(Mi sigma1720)
 

Sobolev Lifting over Invariants

Adam Parusińskia, Armin Rainerb

a Université Côte d'Azur, CNRS, LJAD, UMR 7351, 06108 Nice, France
b Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
References:
Abstract: We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $\sigma=(\sigma_1,\dots,\sigma_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $\overline{f} \colon \mathbb{R}^m \to V$ such that $f = \sigma \circ \overline{f}$ is of class $C^{d-1,1}$ is locally of Sobolev class $W^{1,p}$ for all $1 \le p < d/(d-1)$. In the case $m=1$ there always exists a continuous choice $\overline{f}$ for given $f\colon \mathbb{R} \to \sigma(V) \subseteq \mathbb{C}^n$. We give uniform bounds for the $W^{1,p}$-norm of $\overline{f}$ in terms of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $\overline{f}$ cannot have a higher Sobolev regularity and it even might not have bounded variation if $f$ is in a larger Hölder class.
Keywords: Sobolev lifting over invariants, complex representations of finite groups, $Q$-valued Sobolev functions.
Funding agency Grant number
Austrian Science Fund P 32905-N
START Programme Y963
Agence Nationale de la Recherche ANR-17-CE40-0023-LISA
Supported by the Austrian Science Fund (FWF), Grant P 32905-N and START Programme Y963, and by ANR project ANR-17-CE40-0023-LISA.
Received: November 4, 2020; in final form March 29, 2021; Published online April 10, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Adam Parusiński, Armin Rainer, “Sobolev Lifting over Invariants”, SIGMA, 17 (2021), 037, 31 pp.
Citation in format AMSBIB
\Bibitem{ParRai21}
\by Adam~Parusi\'nski, Armin~Rainer
\paper Sobolev Lifting over Invariants
\jour SIGMA
\yr 2021
\vol 17
\papernumber 037
\totalpages 31
\mathnet{http://mi.mathnet.ru/sigma1720}
\crossref{https://doi.org/10.3842/SIGMA.2021.037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000641902600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104592914}
Linking options:
  • https://www.mathnet.ru/eng/sigma1720
  • https://www.mathnet.ru/eng/sigma/v17/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :16
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024