Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 028, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.028
(Mi sigma1711)
 

Stringy Kähler Moduli for the Pfaffian–Grassmannian Correspondence

Will Donovan

Yau Mathematical Sciences Center, Tsinghua University, Haidian District, Beijing 100084, China
References:
Abstract: The Pfaffian–Grassmannian correspondence relates certain pairs of derived equivalent non-birational Calabi–Yau 3-folds. Given such a pair, I construct a set of derived equivalences corresponding to mutations of an exceptional collection on the relevant Grassmannian, and give a mirror symmetry interpretation, following a physical analysis of Eager, Hori, Knapp, and Romo.
Keywords: Calabi–Yau threefolds, stringy Kähler moduli, derived category, derived equivalence, matrix factorizations, Landau–Ginzburg model, Pfaffian, Grassmannian.
Funding agency Grant number
Ministry of Education, Culture, Sports, Science and Technology, Japan
EPSRC EP/R034826/1
Tsinghua University
I am supported by the Yau MSC, Tsinghua University, and the Thousand Talents Plan. I also acknowledge the support of WPI Initiative, MEXT, Japan, and of EPSRC Programme Grant EP/R034826/1.
Received: September 29, 2020; in final form March 10, 2021; Published online March 24, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Will Donovan, “Stringy Kähler Moduli for the Pfaffian–Grassmannian Correspondence”, SIGMA, 17 (2021), 028, 22 pp.
Citation in format AMSBIB
\Bibitem{Don21}
\by Will~Donovan
\paper Stringy K\"ahler Moduli for the Pfaffian--Grassmannian Correspondence
\jour SIGMA
\yr 2021
\vol 17
\papernumber 028
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma1711}
\crossref{https://doi.org/10.3842/SIGMA.2021.028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000641901200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104297883}
Linking options:
  • https://www.mathnet.ru/eng/sigma1711
  • https://www.mathnet.ru/eng/sigma/v17/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :18
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024