Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 023, 31 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.023
(Mi sigma1706)
 

A Classification of Twisted Austere $3$-Folds

Thomas A. Iveya, Spiro Karigiannisb

a Department of Mathematics, College of Charleston, USA
b Department of Pure Mathematics, University of Waterloo, Canada
References:
Abstract: A twisted-austere $k$-fold $(M, \mu)$ in ${\mathbb R}^n$ consists of a $k$-dimensional submanifold $M$ of ${\mathbb R}^n$ together with a closed $1$-form $\mu$ on $M$, such that the second fundamental form $A$ of $M$ and the $1$-form $\mu$ satisfy a particular system of coupled nonlinear second order PDE. Given such an object, the “twisted conormal bundle” $N^* M + \mathrm{d} \mu$ is a special Lagrangian submanifold of ${\mathbb C}^n$. We review the twisted-austere condition and give an explicit example. Then we focus on twisted-austere $3$-folds. We give a geometric description of all solutions when the “base” $M$ is a cylinder, and when $M$ is austere. Finally, we prove that, other than the case of a generalized helicoid in ${\mathbb R}^5$ discovered by Bryant, there are no other possibilities for the base $M$. This gives a complete classification of twisted-austere $3$-folds in ${\mathbb R}^n$.
Keywords: calibrated geometry, special Lagrangian submanifolds, austere submanifolds, exterior differential systems.
Received: October 13, 2020; in final form March 2, 2021; Published online March 10, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Thomas A. Ivey, Spiro Karigiannis, “A Classification of Twisted Austere $3$-Folds”, SIGMA, 17 (2021), 023, 31 pp.
Citation in format AMSBIB
\Bibitem{IveKar21}
\by Thomas~A.~Ivey, Spiro~Karigiannis
\paper A Classification of Twisted Austere $3$-Folds
\jour SIGMA
\yr 2021
\vol 17
\papernumber 023
\totalpages 31
\mathnet{http://mi.mathnet.ru/sigma1706}
\crossref{https://doi.org/10.3842/SIGMA.2021.023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000628648500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103134882}
Linking options:
  • https://www.mathnet.ru/eng/sigma1706
  • https://www.mathnet.ru/eng/sigma/v17/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :298
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024