Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 022, 39 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.022
(Mi sigma1705)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Differential Geometry of the Orbit Space of Extended Affine Jacobi Group $A_1$

Guilherme F. Almeida

SISSA, via Bonomea 265, Trieste, Italy
Full-text PDF (543 kB) Citations (2)
References:
Abstract: We define certain extensions of Jacobi groups of $A_1$, prove an analogue of Chevalley theorem for their invariants, and construct a Dubrovin–Frobenius structure on its orbit space.
Keywords: Dubrovin–Frobenius manifolds, Hurwitz spaces, extended Jacobi groups.
Received: May 30, 2020; in final form February 11, 2021; Published online March 9, 2021
Bibliographic databases:
Document Type: Article
MSC: 53D45
Language: English
Citation: Guilherme F. Almeida, “The Differential Geometry of the Orbit Space of Extended Affine Jacobi Group $A_1$”, SIGMA, 17 (2021), 022, 39 pp.
Citation in format AMSBIB
\Bibitem{Alm21}
\by Guilherme~F.~Almeida
\paper The Differential Geometry of the Orbit Space of Extended Affine Jacobi Group $A_1$
\jour SIGMA
\yr 2021
\vol 17
\papernumber 022
\totalpages 39
\mathnet{http://mi.mathnet.ru/sigma1705}
\crossref{https://doi.org/10.3842/SIGMA.2021.022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000628648400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103100593}
Linking options:
  • https://www.mathnet.ru/eng/sigma1705
  • https://www.mathnet.ru/eng/sigma/v17/p22
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025