Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 017, 29 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.017
(Mi sigma1700)
 

Convergence to the Product of the Standard Spheres and Eigenvalues of the Laplacian

Masayuki Aino

RIKEN, Center for Advanced Intelligence Project AIP, 1-4-1 Nihonbashi, Tokyo 103-0027, Japan
References:
Abstract: We show a Gromov–Hausdorff approximation to the product of the standard spheres $S^{n-p}\times S^p$ for Riemannian manifolds with positive Ricci curvature under some pinching condition on the eigenvalues of the Laplacian acting on functions and forms.
Keywords: Gromov–Hausdorff distance, Lichnerowicz–Obata estimate, parallel $p$-form.
Funding agency
This work was supported by RIKEN Special Postdoctoral Researcher Program.
Received: July 17, 2020; in final form February 7, 2021; Published online February 24, 2021
Bibliographic databases:
Document Type: Article
MSC: 53C20, 58J50
Language: English
Citation: Masayuki Aino, “Convergence to the Product of the Standard Spheres and Eigenvalues of the Laplacian”, SIGMA, 17 (2021), 017, 29 pp.
Citation in format AMSBIB
\Bibitem{Ain21}
\by Masayuki~Aino
\paper Convergence to the Product of the Standard Spheres and Eigenvalues of the Laplacian
\jour SIGMA
\yr 2021
\vol 17
\papernumber 017
\totalpages 29
\mathnet{http://mi.mathnet.ru/sigma1700}
\crossref{https://doi.org/10.3842/SIGMA.2021.017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000628647400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103244790}
Linking options:
  • https://www.mathnet.ru/eng/sigma1700
  • https://www.mathnet.ru/eng/sigma/v17/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025