Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 013, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.013
(Mi sigma1696)
 

This article is cited in 2 scientific papers (total in 2 papers)

Curvature-Dimension Condition Meets Gromov's $n$-Volumic Scalar Curvature

Jialong Deng

Mathematisches Institut, Georg-August-Universität, Göttingen, Germany
Full-text PDF (473 kB) Citations (2)
References:
Abstract: We study the properties of the $n$-volumic scalar curvature in this note. Lott–Sturm–Villani's curvature-dimension condition ${\rm CD}(\kappa,n)$ was showed to imply Gromov's $n$-volumic scalar curvature $\geq n\kappa$ under an additional $n$-dimensional condition and we show the stability of $n$-volumic scalar curvature $\geq \kappa$ with respect to smGH-convergence. Then we propose a new weighted scalar curvature on the weighted Riemannian manifold and show its properties.
Keywords: curvature-dimension condition, $n$-volumic scalar curvature, stability, weighted scalar curvature ${\rm Sc}_{\alpha, \beta}$.
Received: July 29, 2020; in final form January 23, 2021; Published online February 5, 2021
Bibliographic databases:
Document Type: Article
MSC: 53C23
Language: English
Citation: Jialong Deng, “Curvature-Dimension Condition Meets Gromov's $n$-Volumic Scalar Curvature”, SIGMA, 17 (2021), 013, 20 pp.
Citation in format AMSBIB
\Bibitem{Den21}
\by Jialong~Deng
\paper Curvature-Dimension Condition Meets Gromov's $n$-Volumic Scalar Curvature
\jour SIGMA
\yr 2021
\vol 17
\papernumber 013
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma1696}
\crossref{https://doi.org/10.3842/SIGMA.2021.013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000619814800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101160569}
Linking options:
  • https://www.mathnet.ru/eng/sigma1696
  • https://www.mathnet.ru/eng/sigma/v17/p13
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025