Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 011, 25 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.011
(Mi sigma1694)
 

Invariant Dirac Operators, Harmonic Spinors, and Vanishing Theorems in CR Geometry

Felipe Leitner

Universität Greifswald, Institut für Mathematik und Informatik,Walter-Rathenau-Str. 47, D-17489 Greifswald, Germany
References:
Abstract: We study Kohn–Dirac operators $D_\theta$ on strictly pseudoconvex CR manifolds with ${\rm spin}^{\mathbb C}$ structure of weight $\ell\in{\mathbb Z}$. Certain components of $D_\theta$ are CR invariants. We also derive CR invariant twistor operators of weight $\ell$. Harmonic spinors correspond to cohomology classes of some twisted Kohn–Rossi complex. Applying a Schrödinger–Lichnerowicz-type formula, we prove vanishing theorems for harmonic spinors and (twisted) Kohn–Rossi groups. We also derive obstructions to positive Webster curvature.
Keywords: CR geometry, spin geometry, Kohn–Dirac operator, harmonic spinors, Kohn–Rossi cohomology, vanishing theorems.
Received: July 23, 2020; in final form January 22, 2021; Published online February 4, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Felipe Leitner, “Invariant Dirac Operators, Harmonic Spinors, and Vanishing Theorems in CR Geometry”, SIGMA, 17 (2021), 011, 25 pp.
Citation in format AMSBIB
\Bibitem{Lei21}
\by Felipe~Leitner
\paper Invariant Dirac Operators, Harmonic Spinors, and Vanishing Theorems in CR Geometry
\jour SIGMA
\yr 2021
\vol 17
\papernumber 011
\totalpages 25
\mathnet{http://mi.mathnet.ru/sigma1694}
\crossref{https://doi.org/10.3842/SIGMA.2021.011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614367900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101137964}
Linking options:
  • https://www.mathnet.ru/eng/sigma1694
  • https://www.mathnet.ru/eng/sigma/v17/p11
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :19
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024