Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 009, 38 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.009
(Mi sigma1692)
 

Double Lowering Operators on Polynomials

Paul Terwilliger

Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
References:
Abstract: Recently Sarah Bockting-Conrad introduced the double lowering operator $\psi$ for a tridiagonal pair. Motivated by $\psi$ we consider the following problem about polynomials. Let $\mathbb F$ denote an algebraically closed field. Let $x$ denote an indeterminate, and let $\mathbb F\lbrack x \rbrack$ denote the algebra consisting of the polynomials in $x$ that have all coefficients in $\mathbb F$. Let $N$ denote a positive integer or $\infty$. Let $\lbrace a_i\rbrace_{i=0}^{N-1}$, $\lbrace b_i\rbrace_{i=0}^{N-1}$ denote scalars in $\mathbb F$ such that $\sum_{h=0}^{i-1} a_h \not= \sum_{h=0}^{i-1} b_h$ for $1 \leq i \leq N$. For $0 \leq i \leq N$ define polynomials $\tau_i, \eta_i \in \mathbb F\lbrack x \rbrack$ by $\tau_i = \prod_{h=0}^{i-1} (x-a_h)$ and $\eta_i = \prod_{h=0}^{i-1} (x-b_h)$. Let $V$ denote the subspace of $\mathbb F\lbrack x \rbrack$ spanned by $\lbrace x^i\rbrace_{i=0}^N$. An element $\psi \in \operatorname{End}(V)$ is called double lowering whenever $\psi \tau_i \in \mathbb F \tau_{i-1}$ and $\psi \eta_i \in \mathbb F \eta_{i-1}$ for $0 \leq i \leq N$, where $\tau_{-1}=0$ and $\eta_{-1}=0$. We give necessary and sufficient conditions on $\lbrace a_i\rbrace_{i=0}^{N-1}$, $\lbrace b_i\rbrace_{i=0}^{N-1}$ for there to exist a nonzero double lowering map. There are four families of solutions, which we describe in detail.
Keywords: tridiagonal pair, $q$-exponential function, basic hypergeometric series, $q$-binomial theorem.
Received: September 15, 2020; in final form January 19, 2021; Published online January 28, 2021
Bibliographic databases:
Document Type: Article
MSC: 33D15, 15A21
Language: English
Citation: Paul Terwilliger, “Double Lowering Operators on Polynomials”, SIGMA, 17 (2021), 009, 38 pp.
Citation in format AMSBIB
\Bibitem{Ter21}
\by Paul~Terwilliger
\paper Double Lowering Operators on Polynomials
\jour SIGMA
\yr 2021
\vol 17
\papernumber 009
\totalpages 38
\mathnet{http://mi.mathnet.ru/sigma1692}
\crossref{https://doi.org/10.3842/SIGMA.2021.009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614367300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102125856}
Linking options:
  • https://www.mathnet.ru/eng/sigma1692
  • https://www.mathnet.ru/eng/sigma/v17/p9
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025