Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 136, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.136
(Mi sigma1689)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the $2$-Systole of Stretched Enough Positive Scalar Curvature Metrics on $\mathbb{S}^2\times\mathbb{S}^2$

Thomas Richardab

a Univ Gustave Eiffel, LAMA, F-77447 Marne-la-Vallée, France
b Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France
Full-text PDF (319 kB) Citations (2)
References:
Abstract: We use recent developments by Gromov and Zhu to derive an upper bound for the $2$-systole of the homology class of $\mathbb{S}^2\times\{\ast\}$ in a $\mathbb{S}^2\times\mathbb{S}^2$ with a positive scalar curvature metric such that the set of surfaces homologous to $\mathbb{S}^2\times\{\ast\}$ is wide enough in some sense.
Keywords: scalar curvature, higher systoles, geometric inequalities.
Funding agency Grant number
Agence Nationale de la Recherche ANR-17-CE40-0034
The author is supported by the grant ANR-17-CE40-0034 of the French National Research Agency ANR (Project CCEM).
Received: July 7, 2020; in final form December 14, 2020; Published online December 17, 2020
Bibliographic databases:
Document Type: Article
MSC: 53C42, 53C20
Language: English
Citation: Thomas Richard, “On the $2$-Systole of Stretched Enough Positive Scalar Curvature Metrics on $\mathbb{S}^2\times\mathbb{S}^2$”, SIGMA, 16 (2020), 136, 7 pp.
Citation in format AMSBIB
\Bibitem{Ric20}
\by Thomas~Richard
\paper On the $2$-Systole of Stretched Enough Positive Scalar Curvature Metrics on $\mathbb{S}^2\times\mathbb{S}^2$
\jour SIGMA
\yr 2020
\vol 16
\papernumber 136
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma1689}
\crossref{https://doi.org/10.3842/SIGMA.2020.136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000601244700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098523592}
Linking options:
  • https://www.mathnet.ru/eng/sigma1689
  • https://www.mathnet.ru/eng/sigma/v16/p136
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :18
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024