Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 006, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.006
(Mi sigma1688)
 

Poisson Principal Bundles

Shahn Majid, Liam Williams

School of Mathematical Sciences, Queen Mary University of London, Mile End Rd, London E1 4NS, UK
References:
Abstract: We semiclassicalise the theory of quantum group principal bundles to the level of Poisson geometry. The total space $X$ is a Poisson manifold with Poisson-compatible contravariant connection, the fibre is a Poisson–Lie group in the sense of Drinfeld with bicovariant Poisson-compatible contravariant connection, and the base has an inherited Poisson structure and Poisson-compatible contravariant connection. The latter are known to be the semiclassical data for a quantum differential calculus. The theory is illustrated by the Poisson level of the $q$-Hopf fibration on the standard $q$-sphere. We also construct the Poisson level of the spin connection on a principal bundle.
Keywords: noncommutative geometry, quantum group gauge theory, symplectic geometry, Poisson geometry, Lie bialgebra, homogenous space, $q$-monopole.
Received: June 11, 2020; in final form January 5, 2021; Published online January 13, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Shahn Majid, Liam Williams, “Poisson Principal Bundles”, SIGMA, 17 (2021), 006, 23 pp.
Citation in format AMSBIB
\Bibitem{MajWil21}
\by Shahn~Majid, Liam~Williams
\paper Poisson Principal Bundles
\jour SIGMA
\yr 2021
\vol 17
\papernumber 006
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma1688}
\crossref{https://doi.org/10.3842/SIGMA.2021.006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607122300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101075574}
Linking options:
  • https://www.mathnet.ru/eng/sigma1688
  • https://www.mathnet.ru/eng/sigma/v17/p6
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025