Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 003, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.003
(Mi sigma1685)
 

The Expansion of Wronskian Hermite Polynomials in the Hermite Basis

Codruţ Grosua, Corina Grosub

a Google Zürich, Brandschenkestrasse 110, Zürich, Switzerland
b Department of Applied Mathematics, Politehnica University of Bucharest, Splaiul Independentei 313, Bucharest, Romania
References:
Abstract: We express Wronskian Hermite polynomials in the Hermite basis and obtain an explicit formula for the coefficients. From this we deduce an upper bound for the modulus of the roots in the case of partitions of length 2. We also derive a general upper bound for the modulus of the real and purely imaginary roots. These bounds are very useful in the study of irreducibility of Wronskian Hermite polynomials. Additionally, we generalize some of our results to a larger class of polynomials.
Keywords: Wronskian, Hermite polynomials, Schrödinger operator.
Received: July 8, 2020; in final form January 4, 2021; Published online January 9, 2021
Bibliographic databases:
Document Type: Article
MSC: 26C10, 30C15, 34L40
Language: English
Citation: Codruţ Grosu, Corina Grosu, “The Expansion of Wronskian Hermite Polynomials in the Hermite Basis”, SIGMA, 17 (2021), 003, 14 pp.
Citation in format AMSBIB
\Bibitem{GroGro21}
\by Codru\c t~Grosu, Corina~Grosu
\paper The Expansion of Wronskian Hermite Polynomials in the Hermite Basis
\jour SIGMA
\yr 2021
\vol 17
\papernumber 003
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1685}
\crossref{https://doi.org/10.3842/SIGMA.2021.003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607120000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101071695}
Linking options:
  • https://www.mathnet.ru/eng/sigma1685
  • https://www.mathnet.ru/eng/sigma/v17/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :23
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024