Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 140, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.140
(Mi sigma1676)
 

An Explicit Example of Polynomials Orthogonal on the Unit Circle with a Dense Point Spectrum Generated by a Geometric Distribution

Alexei Zhedanov

School of Mathematics, Renmin University of China, Beijing 100872, China
References:
Abstract: We present a new explicit family of polynomials orthogonal on the unit circle with a dense point spectrum. This family is expressed in terms of $q$-hypergeometric function of type ${_2}\phi_1$. The orthogonality measure is the wrapped geometric distribution. Some “classical” properties of the above polynomials are presented.
Keywords: polynomials orthogonal on the unit circle, wrapped geometric dustribution, dense point spectrum.
Funding agency Grant number
Simons Foundation
National Natural Science Foundation of China 11771015
The author is gratefully holding Simons CRM Professorship and is funded by the National Foundation of China (Grant No. 11771015.
Received: November 2, 2020; in final form December 19, 2020; Published online December 21, 2020
Bibliographic databases:
Document Type: Article
MSC: 33D45, 42C05
Language: English
Citation: Alexei Zhedanov, “An Explicit Example of Polynomials Orthogonal on the Unit Circle with a Dense Point Spectrum Generated by a Geometric Distribution”, SIGMA, 16 (2020), 140, 9 pp.
Citation in format AMSBIB
\Bibitem{Zhe20}
\by Alexei~Zhedanov
\paper An Explicit Example of Polynomials Orthogonal on the Unit Circle with a Dense Point Spectrum Generated by a Geometric Distribution
\jour SIGMA
\yr 2020
\vol 16
\papernumber 140
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma1676}
\crossref{https://doi.org/10.3842/SIGMA.2020.140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000601246500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098282070}
Linking options:
  • https://www.mathnet.ru/eng/sigma1676
  • https://www.mathnet.ru/eng/sigma/v16/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024